Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Y. Lim, W. Shen, and Z. Q. Gao, Chem. Soc. Rev. 44, 362 (2015).
2.S. N. Baker and G. A. Baker, Angew. Chem., Int. Ed. 49, 6726 (2010).
3.J. C. Ge, M. H. Lan, B. J. Zhou, W. M. Liu, L. Guo, H. Wang, Q. Y. Jia, G. L. Niu, X. Huang, H. Y. Zhou, X. M. Meng, P. F. Wang, C. S. Lee, W. J. Zhang, and X. D. Han, Nat. Commun. 5, 4596 (2014).
4.Q. L. Zhao, Z. L. Zhang, B. H. Huang, J. Peng, M. Zhang, and D. W. Pang, Chem. Commun. 2008(41), 5116.
5.R. L. Liu, D. Q. Wu, S. H. Liu, K. Koynov, W. Knoll, and Q. Li, Angew. Chem., Int. Ed. 48, 4598 (2009).
6.S. J. Zhu, Q. N. Meng, L. Wang, J. H. Zhang, Y. B. Song, H. Jin, K. Zhang, H. C. Sun, H. Y. Wang, and B. Yang, Angew. Chem. 125, 4045 (2013).
7.H. T. Li, X. D. He, Z. H. Kang, H. Huang, Y. Liu, J. L. Liu, S. Y. Lian, C. H. A. Tsang, X. B. Yang, and S. T. Lee, Angew. Chem., Int. Ed. 49, 4430 (2010).
8.J. Liu, Y. Liu, N. Y. Liu, Y. Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong, and Z. H. Kang, Science 347, 970 (2015).
9.L. H. Mao, W. Q. Tang, Z. Y. Deng, S. S. Liu, C. F. Wang, and S. Chen, Ind. Eng. Chem. Res. 53, 6417 (2014).
10.L. Wang, S. J. Zhu, H. Y. Wang, S. N. Qu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, H. L. Xu, W. Han, B. Yang, and H. B. Sun, ACS Nano 8, 2541 (2014).
11.H. Wang, Y. Wang, J. Guo, Y. Su, C. Sun, J. Zhao, H. M. Luo, X. Dai, and G. F. Zou, RSC Adv. 5, 13036 (2015).
12.Y. Q. Zhang, D. K. Ma, Y. G. Zhang, W. Chen, and S. M. Huang, Nano Energy 2, 545 (2013).
13.V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, and S. Chand, J. Am. Chem. Soc. 133, 9960 (2011).
14.Y. Li, Y. Hu, Y. Zhao, G. Q. Shi, L. E. Deng, Y. B. Hou, and L. T. Qu, Adv. Mater. 23, 776 (2011).
15.X. Y. Xu, R. Ray, Y. L. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc. 126, 12736 (2004).
16.Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, and H. F. Wang, J. Am. Chem. Soc. 128, 7756 (2006).
17.R. Q. Ye, C. S. Xiang, J. Lin, Z. W. Peng, K. W. Huang, Z. Yan, N. P. Cook, E. L. G. Samuel, C. C. Hwang, and G. D. Ruan, Nat. Commun. 4, 2943 (2013).
18.J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. R. Aburto, L. H. Ge, L. Song, L. B. Alemany, X. B. Zhan, and G. H. Gao, Nano Lett. 12, 844 (2012).
19.R. L. Liu, D. Q. Wu, X. L. Feng, and K. Müllen, J. Am. Chem. Soc. 133, 15221 (2011).
20.X. Y. Zhai, P. Zhang, C. J. Liu, T. Bai, W. C. Li, L. M. Dai, and W. G. Liu, Chem. Commun. 48, 7955 (2012).
21.L. Wang, Y. L. Wang, T. Xu, H. B. Liao, C. J. Yao, Y. Liu, Z. Li, Z. W. Chen, D. Y. Pan, L. T. Sun, and M. H. Wu, Nat. Commun. 5, 5357 (2014).
22.X. M. Li, S. L. Zhang, S. A. Kulinich, Y. L. Liu, and H. B. Zeng, Sci. Rep. 4, 4976 (2014).
23.G. S. Kumar, R. Roy, D. Sen, U. K. Ghorai, R. Thapa, N. Mazumder, S. Saha, and K. K. Chattopadhyay, Nanoscale 6, 3384 (2014).
24.H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, and A. Okamoto, Adv. Mater. 24, 5333 (2012).
25.S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong, and S. Jeon, ACS Nano 7, 1239 (2012).
26.Q. S. Mei, K. Zhang, G. J. Guan, B. H. Liu, S. H. Wang, and Z. P. Zhang, Chem. Commun. 46, 7319 (2010).
27.Y. Q. Zhang, D. K. Ma, Y. Zhuang, X. Zhang, W. Chen, L. L. Hong, Q. X. Yan, K. Yu, and S. M. Huang, J. Mater. Chem. 22, 16714 (2012).
28.M. H. Xu, G. L. He, Z. H. Li, F. J. He, F. Gao, Y. J. Su, L. Y. Zhang, Z. Yang, and Y. F. Zhang, Nanoscale 6, 10307 (2014).
29.D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R. E. Haddad, H. Fan, and Z. Sun, Sci. Rep. 4, 5294 (2014).
30.S. N. Qu, X. Y. Liu, X. Y. Guo, M. H. Chu, L. G. Zhang, and D. Z. Shen, Adv. Funct. Mater. 24, 2689 (2014).
31.See supplementary material at for N1s XPS analysis, Raman spectra, fluorescence decay trace, PL spectra of NCDs, and cell-label images.[Supplementary Material]
32.Y. Li, Y. Zhao, H. H. Cheng, Y. Hu, G. Q. Shi, L. M. Dai, and L. T. Qu, J. Am. Chem. Soc. 134, 15 (2012).
33.X. F. Hu, L. Cheng, N. Wang, L. Sun, W. Wang, and W. G. Liu, RSC Adv. 4, 18818 (2014).
34.Y. Xu, M. Wu, Y. Liu, X. Z. Feng, X. B. Yin, X. W. He, and Y. K. Zhang, Chem. Eur. J. 19, 2276 (2013).
35.Z. Q. Jiang, A. Nolan, J. G. A. Walton, A. Lilienkampf, R. Zhang, and M. Bradley, Chem. Eur. J. 20, 10926 (2014).
36.J. Zhang, Y. Yuan, G. L. Liang, and S. H. Yu, Adv. Sci. 2, 1500002 (2015).
37.X. Y. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. H. Wang, P. Wang, T. Q. Zhang, Y. Zhao, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, ACS Nano 7, 11234 (2013).
38.T. Liu, R. Xing, Y. F. Zhou, J. Zhang, Y. Y. Su, K. Q. Zhang, Y. He, Y. H. Sima, and S. Q. Xu, Biomaterials 35, 2942 (2014).

Data & Media loading...


Article metrics loading...



In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd