Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/8/10.1063/1.4928289
1.
1.I. Osborne, M. Lavine, and R. Coontz, Science 327, 1595 (2010).
http://dx.doi.org/10.1126/science.327.5973.1595
2.
2.G. Thomas, Nature 389, 907 (1997).
http://dx.doi.org/10.1038/39999
3.
3. This became particularly evident at two workshops focused on oxide electronics in 2014: The 21st International Workshop on Oxide Electronics held in Bolton Landing, New York, and the Advances in oxide materials: Preparation, properties, performance hosted by University of California, Santa Barbara, California, USA. Surely dozens or more related symposia have explored similar topics, but these meetings provided the impetus for the perspective which is by no means intended to be an exhaustive review of computational materials discovery approaches.
4.
4.J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, NY, 1985).
5.
5.M. Ediger, G. Bester, A. Badolato, P. M. Petroff, K. Karrai, A. Zunger, and R. J. Warburton, Nat. Phys. 3, 774 (2007).
http://dx.doi.org/10.1038/nphys748
6.
6.M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986);
http://dx.doi.org/10.1103/PhysRevB.34.5390
6.M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96, 226402 (2006).
http://dx.doi.org/10.1103/physrevlett.96.226402
7.
7.G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Parcollet, and C. Marianetti, Rev. Mod. Phys. 78, 865 (2006);
http://dx.doi.org/10.1103/RevModPhys.78.865
7.H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 89, 245133 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.245133
8.
8.E. A. Carter, Science 321, 800 (2008).
http://dx.doi.org/10.1126/science.1158009
9.
9.P. R. C. Kent, R. J. Needs, and G. Rajagopal, Phys. Rev. B 59, 12344 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12344
10.
10.S. Lany and A. Zunger, Phys. Rev. Lett. 98, 045501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.045501
11.
11.J. D. Perkins, T. R. Paudel, A. Zakutayev, P. F. Ndione, P. A. Parilla, D. L. Young, S. Lany, D. S. Ginley, A. Zunger, N. H. Perry, Y. Tang, M. Grayson, T. O. Mason, J. S. Bettinger, Y. Shi, and M. F. Toney, Phys. Rev. B 84, 205207 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205207
12.
12.Ç. Kılıç and A. Zunger, Phys. Rev. Lett. 88, 095501 (2002).
http://dx.doi.org/10.1103/physrevlett.88.095501
13.
13.G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, and X. Gonze, Nat. Commun. 4, 2292 (2013).
http://dx.doi.org/10.1038/ncomms3292
14.
14.F. Yan, X. Zhang, Y. Yu, L. Yu, A. Nagaraja, T. O. Mason, and A. Zunger, Nat. Commun. 6, 7308 (2015).
http://dx.doi.org/10.1038/ncomms8308
15.
15.H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).
http://dx.doi.org/10.1038/nphys1270
16.
16.K. Yang, W. Setyawan, S. Wang, M. B. Nardelli, and S. Curtarolo, Nat. Mater. 11, 614 (2012).
http://dx.doi.org/10.1038/nmat3332
17.
17.J. Brgoch, S. P. DenBaars, and R. Seshadri, J. Phys. Chem. C 117, 17955 (2013).
http://dx.doi.org/10.1021/jp405858e
18.
18.M. W. Gaultois, T. D. Sparks, C. K. H. Borg, R. Seshadri, W. D. Bonificio, and D. R. Clarke, Chem. Mater. 25, 2911 (2013).
http://dx.doi.org/10.1021/cm400893e
19.
19.L. Yu and A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.068701
20.
20.J. Yan, P. Gorai, B. Ortiz, S. Miller, S. A. Barnett, T. Mason, V. Stevanović, and E. S. Toberer, Energy Environ. Sci. 8, 983 (2015).
http://dx.doi.org/10.1039/C4EE03157A
21.
21.J. M. Rondinelli, N. A. Benedek, D. E. Freedman, A. Kavner, E. E. Rodriguez, E. S. Toberer, and L. W. Martin, Bull. Am. Ceram. Soc. 92, 14 (2013).
22.
22.S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013).
http://dx.doi.org/10.1038/nmat3568
23.
23.P. V. Balachandran and J. M. Rondinelli, Phys. Rev. B 88, 054101 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.054101
24.
24.A. Franceschetti and A. Zunger, Nature 402, 60 (1999).
http://dx.doi.org/10.1038/46995
25.
25.P. V. Balachandran, S. R. Broderick, and K. Rajan, Proc. R. Soc. A 467, 2271 (2011).
http://dx.doi.org/10.1098/rspa.2010.0543
26.
26.L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.105503
27.
27.O. Isayev, D. Fourches, E. N. Muratov, C. Oses, K. Rasch, A. Tropsha, and S. Curtarolo, Chem. Mater. 27, 735 (2015).
http://dx.doi.org/10.1021/cm503507h
28.
28.B. Meredig and C. Wolverton, Chem. Mater. 26, 1985 (2014).
http://dx.doi.org/10.1021/cm403727z
29.
29.D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, J. Am. Ceram. Soc. 91, 2429 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02556.x
30.
30.D. H. A. Blank, M. Dekkers, and G. Rijnders, J. Phys. D: Appl. Phys. 47, 034006 (2014).
http://dx.doi.org/10.1088/0022-3727/47/3/034006
31.
31.M. d’Avezac, J. W. Luo, T. Chanier, and A. Zunger, Phys. Rev. Lett. 108, 027401 (2012).
http://dx.doi.org/10.1103/physrevlett.108.027401
32.
32.L. Zhang, J.-W. Luo, A. Saraiva, B. Koiller, and A. Zunger, Nat. Commun. 4, 2396 (2013).
http://dx.doi.org/10.1038/ncomms3396
33.
33.M. d’Avezac and A. Zunger, J. Phys.: Condens. Matter 19, 402201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/40/402201
34.
34.A. Franceschetti, S. V. Dudiy, S. V. Barabash, A. Zunger, J. Xu, and M. van Schilfgaarde, Phys. Rev. Lett. 97, 047202 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.047202
35.
35.J. Deng, A. Zunger, and J. Z. Liu, Phys. Rev. B 91, 081301(R) (2015).
http://dx.doi.org/10.1103/physrevb.91.081301
36.
36.U. Menczigar, G. Abstreiter, J. Olajos, H. Grimmeiss, H. Kibbel, H. Presting, and E. Kasper, Phys. Rev. B 47, 4099(R) (1993).
http://dx.doi.org/10.1103/PhysRevB.47.4099
37.
37.E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez, Nature 452, 732 (2008).
http://dx.doi.org/10.1038/nature06817
38.
38.J. M. Rondinelli and C. J. Fennie, Adv. Mater. 24, 1961 (2012).
http://dx.doi.org/10.1002/adma.201104674
39.
39.L. Yu, R. S. Kokenyesi, D. A. Keszler, and A. Zunger, Adv. Energy Mater. 3, 43 (2013).
http://dx.doi.org/10.1002/aenm.201200538
40.
40.V. Stevanović, M. d’Avezac, and A. Zunger, J. Am. Chem. Soc. 133, 11649 (2011).
http://dx.doi.org/10.1021/ja2034602
41.
41.X. W. Zhang and A. Zunger, Adv. Funct. Mater. 20, 1944 (2010).
http://dx.doi.org/10.1002/adfm.200901811
42.
42.R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T. O. L. Sunde, D. Chon, K. R. Poeppelmeier, and A. Zunger, Nat. Chem. 7, 308 (2015).
http://dx.doi.org/10.1038/nchem.2207
43.
43.D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.288
44.
44.G. Trimarchi and A. Zunger, Phys. Rev. B 75, 104113 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.104113
45.
45.S. Q. Wu, M. Ji, C. Z. Wang, M. C. Nguyen, X. Zhao, K. Umemoto, R. M. Wentzcovitch, and K. M. Ho, J. Phys.: Condens. Matter 26, 035402 (2014).
http://dx.doi.org/10.1088/0953-8984/26/3/035402
46.
46.D. P. Shoemaker, Y.-J. Hu, D. Y. Chung, G. J. Halder, P. J. Chupas, L. Soderholm, J. F. Mitchell, and M. G. Kanatzidis, Proc. Natl. Acad. Sci. U. S. A. 111, 10922 (2014).
http://dx.doi.org/10.1073/pnas.1406211111
47.
47.T. Lookman, in Mesoscopic Phenomena in Multifunctional Materials, Springer Series in Materials Science , edited byA. Saxena and A. Planes (Springer, Berlin, Heidelberg, 2014), Vol. 198, pp. 5772;
47.E. Barut and W. B. Powell, J. Global Optim. 58, 517 (2014).
http://dx.doi.org/10.1007/s10898-013-0050-5
48.
48.T. Hey, S. Tansley, and K. M. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery (Microsoft Research, Redmond, WA, 2009).
49.
49.A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013).
http://dx.doi.org/10.1063/1.4812323
50.
50.B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, Phys. Rev. B 89, 094104 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.094104
51.
51. Some computational materials science repositories: AFLOW, AiiDA, Materials Project, NoMaD, and OQMD.
52.
52.Q. Wang, J. Perkins, H. M. Branz, J. Alleman, C. Duncan, and D. Ginley, Appl. Surf. Sci. 189, 271 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)01024-8
53.
53.R. Potyrailo, K. Rajan, K. Soewe, I. Takeuchi, B. Chisholm, and H. Lam, ACS Comb. Sci. 13, 579 (2011).
http://dx.doi.org/10.1021/co200007w
54.
54. White House Office of Science and Technology Policy, Materials Genome Initiative for Global Competitiveness (2011).
55.
55.H. Koinuma and I. Takeuchi, Nat. Mater. 3, 429 (2004).
http://dx.doi.org/10.1038/nmat1157
56.
56.J. W. Bennett and K. M. Rabe, J. Solid State Chem. 195, 21 (2012).
http://dx.doi.org/10.1016/j.jssc.2012.05.013
57.
57.T. Le, V. C. Epa, F. R. Burden, and D. A. Winkler, Chem. Rev. 112, 2889 (2012).
http://dx.doi.org/10.1021/cr200066h
58.
58.K. Rajan, Mater. Today 8, 38 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)71123-8
59.
59.Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. Andreoni, Phys. Rev. B 85, 104104 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.104104
60.
60.A. Seko, T. Maekawa, K. Tsuda, and I. Tanaka, Phys. Rev. B 89, 054303 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.054303
61.
61.J. T. Leek and R. D. Peng, Science 347, 1314 (2015).
http://dx.doi.org/10.1126/science.aaa6146
62.
62.A. Belianinov, R. Vasudevan, E. Strelcov, C. Steed, S. M. Yang, A. Tselev, S. Jesse, M. Biegalski, G. Shipman, C. Symons, A. Borisevich, R. Archibald, and S. V. Kalinin, Adv. Struct. Chem. Imaging 1, 6 (2015).
http://dx.doi.org/10.1186/s40679-015-0006-6
63.
63.A. Belianinov, Q. He, M. Kravchenko, S. Jesse, A. Borisevich, and S. V. Kalinin, Nat. Commun. 6, 7801 (2015).
http://dx.doi.org/10.1038/ncomms8801
64.
64.K. Jaqaman and G. Danuser, Nat. Rev. Mol. Cell Biol. 7, 813 (2006).
http://dx.doi.org/10.1038/nrm2030
65.
65.K. A. Janes and M. B. Yaffe, Nat. Rev. Mol. Cell Biol. 7, 820 (2006).
http://dx.doi.org/10.1038/nrm2041
66.
66.M. Brun, C. Sima, J. Hua, J. Lowey, B. Carroll, E. Suh, and E. R. Dougherty, Pattern Recognit. 40, 807 (2007).
http://dx.doi.org/10.1016/j.patcog.2006.06.026
67.
67.S. Tinkle, D. L. McDowell, A. Barnard, F. Gygi, and P. B. Littlewood, “Comment technology: Sharing data in materials science,” Nature 503, 463 (2013).
http://dx.doi.org/10.1038/503463a
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/8/10.1063/1.4928289
Loading
/content/aip/journal/aplmater/3/8/10.1063/1.4928289
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/8/10.1063/1.4928289
2015-08-12
2016-09-29

Abstract

One of the grand challenges facing materials-by-design approaches for complex oxide deployment in electronic devices is how to balance transformative first-principles based predictions with experimental feasibility. Here, we briefly review the functionality-driven approach (inverse design) for materials discovery, encapsulated in three modalities for materials discovery (3D) that integrate experimental feedback. We compare it to both traditional theoretical and high-throughput database-directed approaches aimed at advancing oxide-based materials into technologies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/8/1.4928289.html;jsessionid=jOGY_3gUraZbpVrKIigZNpnM.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/8/10.1063/1.4928289&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/8/10.1063/1.4928289&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/8/10.1063/1.4928289'
Top,Right1,Right2,Right3,