Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/9/10.1063/1.4930005
1.
1.M. Grätzel, Nature 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
2.
2.K. Takanabe and K. Domen, Green 1, 313 (2011).
http://dx.doi.org/10.1515/GREEN.2011.030
3.
3.D. Nocera, Acc. Chem. Res. 45(5), 767 (2012).
http://dx.doi.org/10.1021/ar2003013
4.
4.S. Cho, J.-W. Jang, K.-H. Lee, and J. S. Lee, APL Mater. 2, 010703 (2014).
http://dx.doi.org/10.1063/1.4861798
5.
5.K. Sivula, F. Le Formal, and M. Grätzel, ChemSusChem 4, 432 (2011).
http://dx.doi.org/10.1002/cssc.201000416
6.
6.T. W. Kim and K.-S. Choi, Science 343, 990 (2014).
http://dx.doi.org/10.1126/science.1246913
7.
7.R. Solarska, R. Jurczakowski, and J. Augustynski, Nanoscale 4, 1553 (2012).
http://dx.doi.org/10.1039/c2nr11573e
8.
8.M. Higashi, K. Domen, and R. Abe, J. Am. Chem. Soc. 134, 6968 (2012).
http://dx.doi.org/10.1021/ja302059g
9.
9.K. Maeda and K. Domen, J. Phys. Chem. C 111, 7851 (2007).
http://dx.doi.org/10.1021/jp070911w
10.
10.Y. Li, L. Zhang, A. Torres-Pardo, J. M. Gonzalez-Calbet, Y. Ma, P. Oleynikov, O. Terasaki, S. Asahina, M. Shima, D. Cha, L. Zhao, K. Takanabe, J. Kubota, and K. Domen, Nat. Commun. 4, 2566 (2013).
http://dx.doi.org/10.1038/ncomms3566
11.
11.G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han, and C. Li, Angew. Chem., Int. Ed. 53, 7295 (2014).
http://dx.doi.org/10.1002/anie.201404697
12.
12.A. Ziani, E. Nurlaela, D. S. Dhawale, D. Alves-Silva, E. Alarousu, O. F. Mahammed, and K. Takanabe, Phys. Chem. Chem. Phys. 17, 2670 (2015).
http://dx.doi.org/10.1039/C4CP05616G
13.
13.J. M. Morbec, I. Narkeviciute, T. F. Jaramillo, and G. Galli, Phys. Rev. B 90, 155204 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.155204
14.
14.C. Janáky, K. Rajeshwar, N. R. de Tacconi, W. Chanmanee, and M. N. Huda, Catal. Today 199, 53 (2013).
http://dx.doi.org/10.1016/j.cattod.2012.07.020
15.
15.W. Jeitschko and A. W. Sleight, Acta Cryst. B28, 3174 (1972).
http://dx.doi.org/10.1107/S056774087200768X
16.
16.I. S. Cho, C. H. Kwak, D. W. Kim, S. Lee, and K. S. Hong, J. Phys. Chem. C 113, 10647 (2009).
http://dx.doi.org/10.1021/jp901557z
17.
17.A. Kuzmin, A. Anspoks, A. Kalinko, J. Timoshenko, and R. Kalendarev, Sol. Energy Mater. Sol. Cells (published online 2014).
http://dx.doi.org/10.1016/j.solmat.2014.12.003
18.
18.J. Ungelenk and C. Feldmann, Chem. Commun. 48, 7838 (2012).
http://dx.doi.org/10.1039/c2cc33224h
19.
19.G. Zhu, W. Que, J. Zhang, and P. Zhong, Mater. Sci. Eng. B 176, 1448 (2011).
http://dx.doi.org/10.1016/j.mseb.2011.08.003
20.
20.J. L. Solis, V. Lantto, L. Haggstromb, B. Kalska, J. Frantti, and S. Saukko, Sens. Actuators, B 68, 286 (2000).
http://dx.doi.org/10.1016/S0925-4005(00)00446-9
21.
21.K. J. Pyper, T. C. Evans, and B. M. Bartlett, Chin. Chem. Lett. 26, 474 (2015).
http://dx.doi.org/10.1016/j.cclet.2015.01.027
22.
22.T. Le Bahers, M. Rérat, and P. Sautet, J. Phys. Chem. C 118, 5997 (2014).
http://dx.doi.org/10.1021/jp409724c
23.
23.M. Harb, D. Masih, S. Ould-Chikh, P. Sautet, J.-M. Basset, and K. Takanabe, J. Phys. Chem. C 117, 17477 (2013).
http://dx.doi.org/10.1021/jp405995w
24.
24.M. Harb, D. Masih, and K. Takanabe, Phys. Chem. Chem. Phys. 16, 18198 (2014).
http://dx.doi.org/10.1039/C4CP02497D
25.
25.M. Harb, P. Sautet, E. Nurlaela, P. Raybaud, L. Cavallo, K. Domen, J.-M. Basset, and K. Takanabe, Phys. Chem. Chem. Phys. 16, 20548 (2014).
http://dx.doi.org/10.1039/C4CP03594A
26.
26.M. Harb, J. Phys. Chem. C 119, 4565 (2015).
http://dx.doi.org/10.1021/jp511878g
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4930005 for detailed experimental methods and data.[Supplementary Material]
28.
28.B. Commoner and D. Lipkin, Science 110, 41 (1949).
http://dx.doi.org/10.1126/science.110.2845.41-a
29.
29.J. F. Lodenquai, Sol. Energy 53, 209 (1994).
http://dx.doi.org/10.1016/0038-092X(94)90483-9
30.
30.Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Chem. Mater. 20, 1299 (2008).
http://dx.doi.org/10.1021/cm071588c
31.
31.D. Noureldine, D. H. Anjum, and K. Takanabe, Phys. Chem. Chem. Phys. 16, 10762 (2014).
http://dx.doi.org/10.1039/c4cp00654b
32.
32.S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, Science 344, 1005 (2014).
http://dx.doi.org/10.1126/science.1251428
33.
33.Y. Inoue, Energy Environ. Sci. 2, 364 (2009).
http://dx.doi.org/10.1039/b816677n
34.
34.G. Ma, T. Hisatomi, and K. Domen, Molecules to Materials (Springer International Publishing, 2015), Vol. 1, ISBN: 978-3-319-13800-8.
35.
35.K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, ACS Photonics 1, 235 (2014).
http://dx.doi.org/10.1021/ph4001026
36.
36.K. Takanabe, Top. Curr. Chem. (published online 2015).
http://dx.doi.org/10.1007/128_2015_646
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/9/10.1063/1.4930005
Loading
/content/aip/journal/aplmater/3/9/10.1063/1.4930005
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/9/10.1063/1.4930005
2015-09-03
2016-12-04

Abstract

We report a combined experimental and theoretical study on the optoelectronic properties of α-SnWO for UV-Vis excitation. The experimentally measured values for thin films were systematically compared with high-accuracy density functional theory and density functional perturbation theory using the HSE06 functional. The α-SnWO material shows an indirect bandgap of 1.52 eV with high absorption coefficient in the visible-light range (>2 × 105 cm−1). The results show relatively high dielectric constant (>30) and weak diffusion properties (large effective masses) of excited carriers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/9/1.4930005.html;jsessionid=G1N-5QnuLlSM5V5YatyydUfy.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/9/10.1063/1.4930005&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/9/10.1063/1.4930005&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/9/10.1063/1.4930005'
Top,Right1,Right2,Right3,