Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. M. Macfarlane, J. Lumin. 100, 1 (2002).
2.W. Tittel, M. Afzelius, T. Chanelière, R. L. Cone, S. Kröll, S. A. Moiseev, and M. J. Sellars, Laser Photonics Rev. 4, 244 (2010).
3.Ph. Goldner, A. Ferrier, and O. Guillot-Noël, Handbook on the Physics and Chemistry of Rare Earths (North Holland, Amsterdam, 2015), Vol. 46, p. 1.
4.F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, Ph. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, Nat. Photonics 8, 775 (2014).
5.C. W. Thiel, T. Böttger, and R. L. Cone, J. Lumin. 131, 353 (2011).
6.J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, in Advances in Atomic, Molecular, and Optical Physics, edited by P. R. Berman, C. C. Lin, and E. Arimondo (Elsevier, 2006), Vol. 54, p. 549.
7.H. Linget, T. Chanelière, J.-L. Le Gouët, P. Berger, L. Morvan, and A. Louchet-Chauvet, Phys. Rev. A 91, 023804 (2015).
8.M. J. Thorpe, L. Rippe, T. Fortier, M. S. Kirchner, and T. Rosenband, Nat. Photonics 5, 688 (2011).
9.P. B. Sellin, N. M. Strickland, J. L. Carlsten, and R. L. Cone, Opt. Lett. 24, 1038 (1999).
10.Y. Li, H. Zhang, C. Kim, K. Wagener, P. Hemmer, and L. V. Wang, Appl. Phys. Lett. 93, 011111 (2008).
11.H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, Appl. Phys. Lett. 100, 131102 (2012).
12.A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and Ph. Goldner, Phys. Rev. B 87, 041102 (2013).
13.A. Ikesue and Y. L. Aung, Nat. Photonics 2, 721 (2008).
14.S. R. Podowitz, R. Gaumé, and R. S. Feigelson, J. Am. Ceram. Soc. 93, 82 (2010).
15.M. J. Thorpe, D. R. Leibrandt, and T. Rosenband, New J. Phys. 15, 033006 (2013).
16.F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. Equall, R. Hutcheson, and R. M. Macfarlane, Phys. Rev. B 68, 085109 (2003).
17.S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, Phys. Rev. B 78, 085410 (2008).
18.B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, Phys. Rev. B 85, 115111 (2012).
19.G. P. Flinn, K. W. Jang, J. Ganem, M. L. Jones, R. Meltzer, and R. M. Macfarlane, Phys. Rev. B 49, 5821 (1994).
20.R. M. Macfarlane and R. M. Shelby, Opt. Commun. 39, 169 (1981).
21.W. R. Babbit, A. Lezama, and T. W. Mossberg, Phys. Rev. B 39, 1987 (1989).
22.M. J. Sellars, R. S. Meltzer, P. T. H. Fisk, and N. B. Manson, J. Opt. Soc. Am. B 11, 1468 (1994).
23.L. Zhang, Z. Huang, and W. Pan, J. Am. Ceram. Soc. 98, 824 (2015).
24.Bruker, TOPAS V4.2, General profile and structure analysis software for powder diffraction data, AXS, Karlsruhe, Germany, 2008.
25.A. A. Coelho, J. Appl. Crystallogr. 36, 86 (2003).
26.R. D. Shannon and C. T. Prewitt, Acta Crystallogr. 25, 925 (1969).
27.R. L. Cone and G. K. Liu, Bull. Am. Phys. Soc. 33, 676 (1988).
28.J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
29.C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, Laser Phys. 24, 106002 (2014).
30.R. M. Macfarlane, Y. Sun, R. L. Cone, C. W. Thiel, and R. W. Equall, J. Lumin. 107, 310 (2004).
31.A. Perrot, Ph. Goldner, D. Giaume, M. Lovrić, C. Adriamiadamanana, R. R. Goncalves, and A. Ferrier, Phys. Rev. Lett. 11, 203601 (2013).
32.N. Kunkel et al., “Influence of preparation method and defects on the coherence properties of rare earth doped ceramics” (unpublished).

Data & Media loading...


Article metrics loading...



Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y O transparent ceramics. This result is obtained on the 7F5D transition in Eu3+ doped Y O ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd