Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/9/10.1063/1.4930221
1.
1.R. M. Macfarlane, J. Lumin. 100, 1 (2002).
http://dx.doi.org/10.1016/S0022-2313(02)00450-7
2.
2.W. Tittel, M. Afzelius, T. Chanelière, R. L. Cone, S. Kröll, S. A. Moiseev, and M. J. Sellars, Laser Photonics Rev. 4, 244 (2010).
http://dx.doi.org/10.1002/lpor.200810056
3.
3.Ph. Goldner, A. Ferrier, and O. Guillot-Noël, Handbook on the Physics and Chemistry of Rare Earths (North Holland, Amsterdam, 2015), Vol. 46, p. 1.
4.
4.F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, Ph. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, Nat. Photonics 8, 775 (2014).
http://dx.doi.org/10.1038/nphoton.2014.215
5.
5.C. W. Thiel, T. Böttger, and R. L. Cone, J. Lumin. 131, 353 (2011).
http://dx.doi.org/10.1016/j.jlumin.2010.12.015
6.
6.J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, in Advances in Atomic, Molecular, and Optical Physics, edited by P. R. Berman, C. C. Lin, and E. Arimondo (Elsevier, 2006), Vol. 54, p. 549.
7.
7.H. Linget, T. Chanelière, J.-L. Le Gouët, P. Berger, L. Morvan, and A. Louchet-Chauvet, Phys. Rev. A 91, 023804 (2015).
http://dx.doi.org/10.1103/PhysRevA.91.023804
8.
8.M. J. Thorpe, L. Rippe, T. Fortier, M. S. Kirchner, and T. Rosenband, Nat. Photonics 5, 688 (2011).
http://dx.doi.org/10.1038/nphoton.2011.215
9.
9.P. B. Sellin, N. M. Strickland, J. L. Carlsten, and R. L. Cone, Opt. Lett. 24, 1038 (1999).
http://dx.doi.org/10.1364/OL.24.001038
10.
10.Y. Li, H. Zhang, C. Kim, K. Wagener, P. Hemmer, and L. V. Wang, Appl. Phys. Lett. 93, 011111 (2008).
http://dx.doi.org/10.1063/1.2952489
11.
11.H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kröll, L. V. Wang, and P. R. Hemmer, Appl. Phys. Lett. 100, 131102 (2012).
http://dx.doi.org/10.1063/1.3696307
12.
12.A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and Ph. Goldner, Phys. Rev. B 87, 041102 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.041102
13.
13.A. Ikesue and Y. L. Aung, Nat. Photonics 2, 721 (2008).
http://dx.doi.org/10.1038/nphoton.2008.243
14.
14.S. R. Podowitz, R. Gaumé, and R. S. Feigelson, J. Am. Ceram. Soc. 93, 82 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2009.03350.x
15.
15.M. J. Thorpe, D. R. Leibrandt, and T. Rosenband, New J. Phys. 15, 033006 (2013).
http://dx.doi.org/10.1088/1367-2630/15/3/033006
16.
16.F. Könz, Y. Sun, C. W. Thiel, R. L. Cone, R. Equall, R. Hutcheson, and R. M. Macfarlane, Phys. Rev. B 68, 085109 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085109
17.
17.S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, Phys. Rev. B 78, 085410 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085410
18.
18.B. Lauritzen, N. Timoney, N. Gisin, M. Afzelius, H. de Riedmatten, Y. Sun, R. M. Macfarlane, and R. L. Cone, Phys. Rev. B 85, 115111 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115111
19.
19.G. P. Flinn, K. W. Jang, J. Ganem, M. L. Jones, R. Meltzer, and R. M. Macfarlane, Phys. Rev. B 49, 5821 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.5821
20.
20.R. M. Macfarlane and R. M. Shelby, Opt. Commun. 39, 169 (1981).
http://dx.doi.org/10.1016/0030-4018(81)90048-1
21.
21.W. R. Babbit, A. Lezama, and T. W. Mossberg, Phys. Rev. B 39, 1987 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.1987
22.
22.M. J. Sellars, R. S. Meltzer, P. T. H. Fisk, and N. B. Manson, J. Opt. Soc. Am. B 11, 1468 (1994).
http://dx.doi.org/10.1364/JOSAB.11.001468
23.
23.L. Zhang, Z. Huang, and W. Pan, J. Am. Ceram. Soc. 98, 824 (2015).
http://dx.doi.org/10.1111/jace.13354
24.
24.Bruker, TOPAS V4.2, General profile and structure analysis software for powder diffraction data, AXS, Karlsruhe, Germany, 2008.
25.
25.A. A. Coelho, J. Appl. Crystallogr. 36, 86 (2003).
http://dx.doi.org/10.1107/S0021889802019878
26.
26.R. D. Shannon and C. T. Prewitt, Acta Crystallogr. 25, 925 (1969).
http://dx.doi.org/10.1107/S0567740869003220
27.
27.R. L. Cone and G. K. Liu, Bull. Am. Phys. Soc. 33, 676 (1988).
28.
28.J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.78
29.
29.C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, Laser Phys. 24, 106002 (2014).
http://dx.doi.org/10.1088/1054-660X/24/10/106002
30.
30.R. M. Macfarlane, Y. Sun, R. L. Cone, C. W. Thiel, and R. W. Equall, J. Lumin. 107, 310 (2004).
http://dx.doi.org/10.1016/j.jlumin.2003.12.029
31.
31.A. Perrot, Ph. Goldner, D. Giaume, M. Lovrić, C. Adriamiadamanana, R. R. Goncalves, and A. Ferrier, Phys. Rev. Lett. 11, 203601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.203601
32.
32.N. Kunkel et al., “Influence of preparation method and defects on the coherence properties of rare earth doped ceramics” (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/9/10.1063/1.4930221
Loading
/content/aip/journal/aplmater/3/9/10.1063/1.4930221
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/9/10.1063/1.4930221
2015-09-09
2016-12-09

Abstract

Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y O transparent ceramics. This result is obtained on the 7F5D transition in Eu3+ doped Y O ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/9/1.4930221.html;jsessionid=Qnt7oS-E4Hch-Sc6S4kms_qv.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/9/10.1063/1.4930221&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/9/10.1063/1.4930221&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/9/10.1063/1.4930221'
Top,Right1,Right2,Right3,