Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/9/10.1063/1.4931750
1.
1.W. Shi, J. Chen, J. Xi, D. Wang, and Z. Shuai, Chem. Mater. 26, 2669 (2014).
http://dx.doi.org/10.1021/cm500429w
2.
2.H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature 475, 364 (2011).
http://dx.doi.org/10.1038/nature10313
3.
3.K. Nakayama, Y. Hirose, J. Soeda, M. Yoshizumi, T. Uemura, M. Uno, W. Li, M. J. Kang, M. Yamagishi, Y. Okada, E. Miyazaki, Y. Nakazawa, A. Nakao, K. Takimiya, and J. Takeya, Adv. Mater. 23, 1626 (2011).
http://dx.doi.org/10.1002/adma.201004387
4.
4.C. Liu, T. Minari, X. Lu, A. Kumatani, and K. Takimiya, Adv. Mater. 23, 523 (2011).
http://dx.doi.org/10.1002/adma.201002682
5.
5.K. Takimiya, H. Ebata, K. Sakamoto, T. Izawa, T. Otsubo, and Y. Kunugi, J. Am. Chem. Soc. 128, 12604 (2006).
http://dx.doi.org/10.1021/ja064052l
6.
6.U. Zschieschang, M. J. Kang, K. Takimiya, T. Sekitani, T. Someya, T. W. Canzler, A. Werner, J. Blochwitz-Nimoth, and H. Klauk, J. Mater. Chem. 22, 4273 (2012).
http://dx.doi.org/10.1039/c1jm14917b
7.
7.G. S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer Science & Business Media, 2013), Vol. 45.
8.
8.T. Uemura, Y. Hirose, M. Uno, K. Takimiya, and J. Takeya, Appl. Phys. Express 2, 111501 (2009).
http://dx.doi.org/10.1143/APEX.2.111501
9.
9.H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, and T. Yui, J. Am. Chem. Soc. 129, 15732 (2007).
http://dx.doi.org/10.1021/ja074841i
10.
10.H. Fritzsche, Solid State Commun. 9, 1813 (1971).
http://dx.doi.org/10.1016/0038-1098(71)90096-2
11.
11.H. Kobayashi, N. Kobayashi, S. Hosoi, N. Koshitani, D. Murakami, R. Shirasawa, Y. Kudo, D. Hobara, Y. Tokita, and M. Itabashi, J. Chem. Phys. 139, 014707 (2013).
http://dx.doi.org/10.1063/1.4812389
12.
12.D. Emin, Phys. Rev. B 59, 6205 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.6205
13.
13.D. Venkateshvaran, a. J. Kronemeijer, J. Moriarty, D. Emin, and H. Sirringhaus, APL Mater. 2, 032102 (2014).
http://dx.doi.org/10.1063/1.4867224
14.
14.D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus, Nature 514, 384 (2014).
http://dx.doi.org/10.1038/nature13854
15.
15.K. P. Pernstich, B. Rössner, and B. Batlogg, Nat. Mater. 7, 321 (2008).
http://dx.doi.org/10.1038/nmat2120
16.
16.A. von Mühlenen, N. Errien, M. Schaer, M.-N. Bussac, and L. Zuppiroli, Phys. Rev. B 75, 115338 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115338
17.
17.O. Bubnova, M. Berggren, and X. Crispin, J. Am. Chem. Soc. 134, 16456 (2012).
http://dx.doi.org/10.1021/ja305188r
18.
18.Y. Xuan, X. Liu, S. Desbief, P. Leclère, M. Fahlman, R. Lazzaroni, M. Berggren, J. Cornil, D. Emin, and X. Crispin, Phys. Rev. B 82, 1 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115454
19.
19.J. Martin, J. Electron. Mater. 42, 1358 (2012).
http://dx.doi.org/10.1007/s11664-012-2212-5
20.
20.J. Veres, S. Ogier, and G. Lloyd, Chem. Mater. 16, 4543 (2004).
http://dx.doi.org/10.1021/cm049598q
21.
21.I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, and a. F. Morpurgo, Nat. Mater. 5, 982 (2006).
http://dx.doi.org/10.1038/nmat1774
22.
22.S. V. Reenen and M. Kemerink, Org. Electron. 15, 2250 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.06.018
23.
23.W. C. Germs, K. Guo, R. a. J. Janssen, and M. Kemerink, Phys. Rev. Lett. 109, 016601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.016601
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/9/10.1063/1.4931750
Loading
/content/aip/journal/aplmater/3/9/10.1063/1.4931750
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/9/10.1063/1.4931750
2015-09-21
2016-09-26

Abstract

We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C-BTBT) and 2,9-didecyl-dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (C-DNTT). The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi [Chem. Mater. , 2669 (2014)] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/9/1.4931750.html;jsessionid=x57J6oCg8iOtFhhG07teRatK.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/9/10.1063/1.4931750&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/9/10.1063/1.4931750&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/9/10.1063/1.4931750'
Top,Right1,Right2,Right3,