Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/1/10.1063/1.4930988
1.
1.H. Shin, S. Jo, and A. G. Mikos, Biomaterials 24, 4353 (2003).
http://dx.doi.org/10.1016/S0142-9612(03)00339-9
2.
2.T. G. Kim, H. Shin, and D. W. Lim, Adv. Funct. Mater. 22, 2446 (2012).
http://dx.doi.org/10.1002/adfm.201103083
3.
3.G. M. Whitesides and B. Grzybowski, Science 295, 2418 (2002).
http://dx.doi.org/10.1126/science.1070821
4.
4.S. Sur, J. B. Matson, M. J. Webber, C. J. Newcomb, and S. I. Stupp, ACS Nano 6, 10776 (2012).
http://dx.doi.org/10.1021/nn304101x
5.
5.D. Zhang and K. A. Kilian, J. Mater. Chem. B 2, 4280 (2014).
http://dx.doi.org/10.1039/C4TB00375F
6.
6.S. W. Cranford and M. J. Buehler, Nano Today 6, 332 (2011).
http://dx.doi.org/10.1016/j.nantod.2011.07.001
7.
7.W. Shenton, D. Pum, U. B. Sleytr, and S. Mann, Nature 389, 585 (1997).
http://dx.doi.org/10.1038/39287
8.
8.C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science 270, 1335 (1995).
http://dx.doi.org/10.1126/science.270.5240.1335
9.
9.F. X. Redl, K.-S. Cho, C. B. Murray, and S. O’Brien, Nature 423, 968 (2003).
http://dx.doi.org/10.1038/nature01702
10.
10.E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, and C. B. Murray, Nature 439, 55 (2006).
http://dx.doi.org/10.1038/nature04414
11.
11.P. Pramod, S. T. S. Joseph, and K. G. Thomas, J. Am. Chem. Soc. 129, 6712 (2007).
http://dx.doi.org/10.1021/ja071536o
12.
12.H. Y. Liu and Q. Yang, J. Mater. Chem. 21, 11961 (2011).
http://dx.doi.org/10.1039/c1jm10109a
13.
13.J. Zhou and Q. Yang, Chem. - Asian J. 7, 2045 (2012).
http://dx.doi.org/10.1002/asia.201200337
14.
14.A.-K. Herrmann, P. Formanek, L. Borchardt, M. Klose, L. Giebeler, J. Eckert, S. Kaskel, N. Gaponik, and A. Eychmüller, Chem. Mater. 26, 1074 (2014).
http://dx.doi.org/10.1021/cm4033258
15.
15.J. Ying, X.-Y. Yang, G. Tian, C. Janiak, and B.-L. Su, Nanoscale 6, 13370 (2014).
http://dx.doi.org/10.1039/C4NR03225J
16.
16.N. C. Bigall, B. Nandan, E. B. Gowd, A. Horechyy, and A. Eychmüller, ACS Appl. Mater. Interfaces 7, 12559 (2015).
http://dx.doi.org/10.1021/am507567q
17.
17.A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. Van Schalkwijk, Nat. Mater. 4, 366 (2005).
http://dx.doi.org/10.1038/nmat1368
18.
18.P. D. Yang and J.-M. Tarascon, Nat. Mater. 11, 560 (2012).
http://dx.doi.org/10.1038/nmat3367
19.
19.H. B. Gray, Nat. Chem. 1, 7 (2009).
http://dx.doi.org/10.1038/nchem.141
20.
20.A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, Science 345, 295 (2014).
http://dx.doi.org/10.1126/science.1254763
21.
21.M. K. Debe, Nature 486, 43 (2012).
http://dx.doi.org/10.1038/nature11115
22.
22.K. P. Gong, F. Du, Z. H. Xia, M. Durstock, and L. M. Dai, Science 323, 760 (2009).
http://dx.doi.org/10.1126/science.1168049
23.
23.H.-P. Liang, H.-M. Zhang, J.-S. Hu, Y.-G. Guo, L.-J. Wan, and C.-L. Bai, Angew. Chem., Int. Ed. 43, 1540 (2004).
http://dx.doi.org/10.1002/anie.200352956
24.
24.M. Armand and J.-M. Tarascon, Nature 451, 652 (2008).
http://dx.doi.org/10.1038/451652a
25.
25.N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. 103, 15729 (2006).
http://dx.doi.org/10.1073/pnas.0603395103
26.
26.Y.-F. Xu, M.-R. Gao, Y.-R. Zheng, J. Jiang, and S.-H. Yu, Angew. Chem., Int. Ed. 52, 8546 (2013).
http://dx.doi.org/10.1002/anie.201303495
27.
27.L. Kuai, J. Geng, C. Y. Chen, E. J. Kan, Y. D. Liu, Q. Wang, and B. Y. Geng, Angew. Chem., Int. Ed. 53, 7547 (2014).
http://dx.doi.org/10.1002/anie.201404208
28.
28.M. Gong, Y. G. Li, H. L. Wang, Y. Y. Liang, J. Z. Wu, J. G. Zhou, J. Wang, T. Regier, F. Wei, and H. J. Dai, J. Am. Chem. Soc. 135, 8452 (2013).
http://dx.doi.org/10.1021/ja4027715
29.
29.M. W. Kanan and D. G. Nocera, Science 321, 1072 (2008).
http://dx.doi.org/10.1126/science.1162018
30.
30.M. T. M. Koper, J. Electroanal. Chem. 660, 254 (2011).
http://dx.doi.org/10.1016/j.jelechem.2010.10.004
31.
31.M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, and Y. Yan, J. Am. Chem. Soc. 136, 7077 (2014).
http://dx.doi.org/10.1021/ja502128j
32.
32.M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev. 110, 6446 (2010).
http://dx.doi.org/10.1021/cr1002326
33.
33.Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, J. Phys. Chem. Lett. 3, 399 (2012).
http://dx.doi.org/10.1021/jz2016507
34.
34.F. Song and X. L. Hu, J. Am. Chem. Soc. 136, 16481 (2014).
http://dx.doi.org/10.1021/ja5096733
35.
35.D. Tang, J. Liu, X. Y. Wu, R. H. Liu, X. Han, Y. Z. Han, H. Huang, Y. Liu, and Z. H. Kang, ACS Appl. Mater. Interfaces 6, 7918 (2014).
http://dx.doi.org/10.1021/am501256x
36.
36.Y.-R. Zheng, M.-R. Gao, Q. Gao, H.-H. Li, J. Xu, Z.-Y. Wu, and S.-H. Yu, Small 11, 182 (2015).
http://dx.doi.org/10.1002/smll.201401423
37.
37.Y. W. Liu, H. Cheng, M. Lyu, S. J. Fan, Q. H. Liu, W. S. Zhang, Y. D. Zhi, C. M. Wang, C. Xiao, S. Q. Wei, B. J. Ye, and Y. Xie, J. Am. Chem. Soc. 136, 15670 (2014).
http://dx.doi.org/10.1021/ja5085157
38.
38.J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. S. Horn, Science 334, 1383 (2011).
http://dx.doi.org/10.1126/science.1212858
39.
39.B. Chi, J. Li, X. Yang, Y. Gong, and N. Wang, Int. J. Hydrogen Energy 30, 29 (2005).
http://dx.doi.org/10.1016/j.ijhydene.2004.03.032
40.
40.Z.-Y. Li, Z.-L. Liu, J.-C. Liang, C.-W. Xu, and X. H. Lu, J. Mater. Chem. A 2, 18236 (2014).
http://dx.doi.org/10.1039/C4TA04110K
41.
41.C. Chen, Y. J. Kang, Z. Y. Huo, Z. W. Zhu, W. Y. Huang, H. L. Xin, J. D. Snyder, D. G. Li, J. A. Herron, M. Mavrikakis, M. F. Chi, K. L. More, Y. D. Li, N. M. Markovic, G. A. Somorjai, P. D. Yang, and V. R. Stamenkovic, Science 343, 1339 (2014).
http://dx.doi.org/10.1126/science.1249061
42.
42.X. L. Xu, X. Zhang, H. Sun, Y. Yang, X. P. Dai, J. S. Gao, X. Y. Li, P. F. Zhang, H.-H. Wang, N.-F. Yu, and S.-G. Sun, Angew. Chem., Int. Ed. 53, 12522 (2014).
http://dx.doi.org/10.1002/anie.201406497
43.
43.R. Frydendal, M. Busch, N. B. Halck, E. A. Paoli, P. Krtil, I. Chorkendorff, and J. Rossmeisl, ChemCatChem 7, 149 (2015).
http://dx.doi.org/10.1002/cctc.201402756
44.
44.See supplementary material at http://dx.doi.org/10.1063/1.4930988 for more information including preparation, XRD pattern, SEM, TEM and elemental mapping image, EDX and ATR-FTIR spectrum, EIS of the sample.[Supplementary Material]
45.
45.C. L. Jiang, G. F. Zou, W. Q. Zhang, W. C. Yu, and Y. T. Qian, Mater. Lett. 60, 2319 (2006).
http://dx.doi.org/10.1016/j.matlet.2005.12.133
46.
46.P. Nash and M. F. Singleton, Bull. Alloy Phase Diagrams 10, 258 (1989).
http://dx.doi.org/10.1007/BF02877507
47.
47.G. R. Shao, G. H. Chen, J. Zuo, M. Gong, and Q. Yang, Langmuir 30, 7811 (2014).
http://dx.doi.org/10.1021/la501267f
48.
48.G. R. Shao, G. H. Chen, W. L. Yang, T. Ding, J. Zuo, and Q. Yang, Langmuir 30, 2863 (2014).
http://dx.doi.org/10.1021/la4042869
49.
49.S. Mourdikoudis and L. M. Liz-Marzán, Chem. Mater. 25, 1465 (2013).
http://dx.doi.org/10.1021/cm4000476
50.
50.H. R. Heulings, X. Y. Huang, J. Li, T. Yuen, and C. L. Lin, Nano Lett. 1, 521 (2001).
http://dx.doi.org/10.1021/nl015556e
51.
51.Q. Yang, K. B. Tang, C. R. Wang, Y. T. Qian, and S. Y. Zhang, J. Phys. Chem. B 106, 9227 (2002).
http://dx.doi.org/10.1021/jp025582g
52.
52.Z.-X. Deng, L. B. Li, and Y. D. Li, Inorg. Chem. 42, 2331 (2003).
http://dx.doi.org/10.1021/ic025846d
53.
53.Z. T. Zhang, D. A. Blom, Z. Gai, J. R. Thompson, J. Shen, and S. Dai, J. Am. Chem. Soc. 125, 7528 (2003).
http://dx.doi.org/10.1021/ja035185z
54.
54.S.-H. Yu, H. Cölfen, K. Tauer, and M. Antonietti, Nat. Mater. 4, 51 (2005).
http://dx.doi.org/10.1038/nmat1268
55.
55.H. Zeng and S. H. Sun, Adv. Funct. Mater. 18, 391 (2008).
http://dx.doi.org/10.1002/adfm.200701211
56.
56.C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, and H. Weller, Science 329, 550 (2010).
http://dx.doi.org/10.1126/science.1188035
57.
57.X. L. Zhou, J. Jiang, T. Ding, J. J. Zhang, B. C. Pan, J. Zuo, and Q. Yang, Nanoscale 6, 11046 (2014).
http://dx.doi.org/10.1039/C4NR02716G
58.
58.C. C. L. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo, J. Am. Chem. Soc. 135, 16977 (2013).
http://dx.doi.org/10.1021/ja407115p
59.
59.X. Lu, Y. H. Ng, and C. Zhao, ChemSusChem 7, 82 (2014).
http://dx.doi.org/10.1002/cssc.201300975
60.
60.B. S. Yeo and A. T. Bell, J. Am. Chem. Soc. 133, 5587 (2011).
http://dx.doi.org/10.1021/ja200559j
61.
61.B. S. Yeo and A. T. Bell, J. Phys. Chem. C 116, 8394 (2012).
http://dx.doi.org/10.1021/jp3007415
62.
62.H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, and P. Strasser, ChemCatChem 2, 724 (2010).
http://dx.doi.org/10.1002/cctc.201000126
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/1/10.1063/1.4930988
Loading
/content/aip/journal/aplmater/4/1/10.1063/1.4930988
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/1/10.1063/1.4930988
2015-09-21
2016-09-29

Abstract

Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like wire shape has been achieved via a facile and moderate hydrothermal process at 120 °C for 1 h from the reaction of nickel nitrate and chloroplatinic acid in alkaline solution in the presence of ethanediamine and hydrazine hydrate. The holothuria-like alloyed NiPt wires are Ni-rich in composition (Ni Pt) and uniform in diameter with many tiny tips outstretched from the wires surface. The holothuria-like wires are assembled from granular subunits with the assistance of capping molecular of ethanediamine and the wires display an improved oxygen evolution reaction catalytic activity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/1/1.4930988.html;jsessionid=duA-Q8Bpr1BxeeyBKjknf8PN.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/1/10.1063/1.4930988&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/1/10.1063/1.4930988&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/1/10.1063/1.4930988'
Top,Right1,Right2,Right3,