Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/1/10.1063/1.4935126
1.
1.K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full, Nature 405, 681685 (2000).
http://dx.doi.org/10.1038/35015073
2.
2.S. Martin and B. Bhushan, J. Fluid Mech. 756, 529 (2014).
http://dx.doi.org/10.1017/jfm.2014.447
3.
3.R. N. Wenzel, Ind. Eng. Chem. 28, 988994 (1936).
http://dx.doi.org/10.1021/ie50320a024
4.
4.A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546551 (1944).
http://dx.doi.org/10.1039/tf9444000546
5.
5.M. Nosonovsky and B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces (Springer-Verlag, Heidelberg, Germany, 2008).
6.
6.T. Liu and C.-J. Kim, Science 346, 10961100 (2014).
http://dx.doi.org/10.1126/science.1254787
7.
7.W. Barthlott and C. Neinhuis, Planta 202, 18 (1997).
http://dx.doi.org/10.1007/s004250050096
8.
8.B. Bhushan and Y. C. Jung, Prog. Mater. Sci. 56, 1108 (2011).
http://dx.doi.org/10.1016/j.pmatsci.2010.04.003
9.
9.G. Bixler and B. Bhushan, Nanoscale 5, 76857710 (2013).
http://dx.doi.org/10.1039/c3nr01710a
10.
10.Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, and L. Jiang, Soft Matter 7, 59485951 (2011).
http://dx.doi.org/10.1039/c1sm05452j
11.
11.R. Rakitov and S. N. Gorb, Proc. R. Soc. B 280, 20122391 (2013).
http://dx.doi.org/10.1098/rspb.2012.2391
12.
12.R. Hensel, R. Helbig, S. Aland, H.-G. Braun, A. Voig, C. Neinhuis, and C. Werner, Langmuir 29, 11001112 (2013).
http://dx.doi.org/10.1021/la304179b
13.
13.Y. C. Jung and B. Bhushan, Langmuir 25, 1416514173 (2009).
http://dx.doi.org/10.1021/la901906h
14.
14.C.-T. Hsieh, F.-L. Wu, and W.-Y. Chen, Mater. Chem. Phys. 121, 1421 (2010).
http://dx.doi.org/10.1016/j.matchemphys.2009.12.031
15.
15.T. Darmanin and F. Guittard, J. Am. Chem. Soc. 131, 79287933 (2009).
http://dx.doi.org/10.1021/ja901392s
16.
16.A. Steele, I. Bayer, and E. Loth, Nano Lett. 9, 501505 (2009).
http://dx.doi.org/10.1021/nl8037272
17.
17.M. Im, H. Im, J.-H. Lee, J.-B. Yoon, and Y.-K. Choi, Soft Matter 6, 14011404 (2010).
http://dx.doi.org/10.1039/b925970h
18.
18.P. Muthiah, B. Bhushan, K. Yun, and H. Kondo, J. Colloid Interface Sci. 409, 227236 (2013).
http://dx.doi.org/10.1016/j.jcis.2013.07.032
19.
19.A. Das, T. M. Schutzius, I. S. Bayer, and C. M. Megaridis, Carbon 50, 13461354 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.11.006
20.
20.S. Nishiwaza and S. Shiratori, J. Mater. Sci. 48, 66136618 (2013).
http://dx.doi.org/10.1007/s10853-013-7459-6
21.
21.W. Jiang, C. M. Grozea, Z. Shi, and G. Liu, ACS Appl. Mater. Interfaces 6, 26292638 (2014).
http://dx.doi.org/10.1021/am4051074
22.
22.L. Yi, X. Meng, X. Tian, W. Zhou, and R. Chen, J. Phys. Chem. C 118, 2667126682 (2014).
http://dx.doi.org/10.1021/jp5065566
23.
23.R. Campos, A. J. Guenthner, A. J. Meuler, A. Tuteja, R. E. Cohen, G. H. Mckinley, T. S. Haddad, and J. M. Mabry, Langmuir 28, 98349841 (2012).
http://dx.doi.org/10.1021/la301480s
24.
24.A. Ulman, Chem. Rev. 96, 15331554 (1996).
http://dx.doi.org/10.1021/cr9502357
25.
25.J. Zimmerman, M. Rabe, G. R. J. Artus, and S. Seeger, Soft Matter 4, 450452 (2008).
http://dx.doi.org/10.1039/b717734h
26.
26.L. Cao, T. P. Price, M. Weiss, and D. Gao, Langmuir 24, 16401643 (2008).
http://dx.doi.org/10.1021/la703401f
27.
27.K. Zhao, K. S. Liu, J. F. Li, W. H. Wang, and L. Jiang, Scr. Mater. 60, 225227 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2008.10.009
28.
28.B. Leng, Z. Shao, G. de With, and W. Ming, Langmuir 25, 24562460 (2009).
http://dx.doi.org/10.1021/la8031144
29.
29.D. Wang, X. Wang, X. Liu, and F. Zhou, J. Phys. Chem. C 114, 99389944 (2010).
http://dx.doi.org/10.1021/jp1023185
30.
30.H. Wang, Y. Xue, and T. Lin, Soft Matter 7, 81588161 (2011).
http://dx.doi.org/10.1039/c1sm05621b
31.
31.H. Jin, M. Kettunen, A. Laiho, H. Pynnönen, J. Paltakari, A. Marmur, O. Ikkala, and R. H. A. Ras, Langmuir 27, 19301934 (2011).
http://dx.doi.org/10.1021/la103877r
32.
32.M. Zhang, T. Zhang, and T. Cui, Langmuir 27, 92959301 (2011).
http://dx.doi.org/10.1021/la200405b
33.
33.Y. Wang and B. Bhushan, ACS Appl. Mater. Interfaces 7, 743755 (2015).
http://dx.doi.org/10.1021/am5067755
34.
34.X. Deng, L. Mammen, H.-J. Butt, and D. Vollmer, Science 335, 6770 (2012).
http://dx.doi.org/10.1126/science.1207115
35.
35.S. Barthwal, Y. S. Kim, and S.-H. Lim, Int. J. Precis. Eng. Manuf. 13, 13111315 (2012).
http://dx.doi.org/10.1007/s12541-012-0174-4
36.
36.V. A. Ganesh, S. S. Dinachali, A. S. Nair, and S. Ramakrishna, ACS Appl. Mater. Interfaces 5, 15271532 (2013).
http://dx.doi.org/10.1021/am302790d
37.
37.J. Yu, H. Wang, N. Yin, and X. Xu, RSC Adv. 4, 2416324169 (2014).
http://dx.doi.org/10.1039/c4ra01350f
38.
38.H.-B. Jo, J. Choi, K.-J. Byeon, H.-J. Choi, and H. Lee, Microelectron. Eng. 116, 5157 (2014).
http://dx.doi.org/10.1016/j.mee.2013.10.009
39.
39.X. Zhu, Z. Zhang, G. Ren, X. Men, B. Ge, and X. Zhou, J. Colloid Interface Sci. 421, 141145 (2014).
http://dx.doi.org/10.1016/j.jcis.2014.01.026
40.
40.K. Ellinas, S. P. Pujari, D. A. Dragatogiannis, C. A. Charitidis, A. Tserepi, H. Zuilhof, and E. Gogolides, ACS Appl. Mater. Interfaces 6, 65106524 (2014).
http://dx.doi.org/10.1021/am5000432
41.
41.S. Peng, X. Yang, D. Tian, and W. Deng, ACS Appl. Mater. Interfaces 6, 48314841 (2014).
http://dx.doi.org/10.1021/am4057858
42.
42.G. Hayase, K. Nonomura, G. Hasegawa, K. Kanamori, and K. Nakanishi, Chem. Mater. 27, 35 (2015).
http://dx.doi.org/10.1021/cm503993n
43.
43.A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, and R. Cohen, Proc. Natl. Acad. Sci. U. S. A. 105, 1820018205 (2008).
http://dx.doi.org/10.1073/pnas.0804872105
44.
44.R. T. R. Kumar, K. B. Mogensen, and P. Bøggild, J. Phys. Chem. C 114, 29362940 (2010).
http://dx.doi.org/10.1021/jp9066422
45.
45.H. Zhao, K.-Y. Law, and V. Sambhy, Langmuir 27, 59275935 (2011).
http://dx.doi.org/10.1021/la104872q
46.
46.H. Wang, Y. Xue, J. Ding, L. Feng, X. Wang, and T. Lin, Angew. Chem., Int. Ed. 50, 1143311436 (2011).
http://dx.doi.org/10.1002/anie.201105069
47.
47.S. Srinivasan, S. S. Chhatre, J. M. Mabry, R. E. Cohen, and G. H. McKinley, Polymer 52, 32093218 (2011).
http://dx.doi.org/10.1016/j.polymer.2011.05.008
48.
48.A. K. Kota, Y. Li, J. M. Mabry, and A. Tuteja, Adv. Mater. 24, 58385843 (2012).
http://dx.doi.org/10.1002/adma.201202554
49.
49.S. Pan, A. K. Kota, J. M. Mabry, and A. Tuteja, J. Am. Chem. Soc. 135, 578581 (2013).
http://dx.doi.org/10.1021/ja310517s
50.
50.N. Ghosh, A. Bajoria, and A. A. Vaidya, ACS Appl. Mater. Interfaces 1, 26362644 (2009).
http://dx.doi.org/10.1021/am9004732
51.
51.P. S. Brown and B. Bhushan, J. Colloid Interface Sci. 456, 210218 (2015).
http://dx.doi.org/10.1016/j.jcis.2015.06.030
52.
52.P. S. Brown and B. Bhushan, Sci. Rep. 5, 14030 (2015).
http://dx.doi.org/10.1038/srep14030
53.
53.M.-T. Lee, C.-C. Hsueh, M. S. Freund, and G. S. Ferguson, Langmuir 14, 64196423 (1998).
http://dx.doi.org/10.1021/la980724c
54.
54.L. Xiong, L. L. Kendrick, H. Heusser, J. C. Webb, B. J. Sparks, J. T. Goetz, W. Guo, C. M. Stafford, M. D. Blanton, S. Nazarenko, and D. L. Patton, ACS Appl. Mater. Interfaces 6, 1076310774 (2014).
http://dx.doi.org/10.1021/am502691g
55.
55.X. Zhu, Z. Zhang, X. Xu, X. Men, J. Yang, X. Zhou, and Q. Xue, Langmuir 27, 1450814513 (2011).
http://dx.doi.org/10.1021/la202753m
56.
56.J. Ou, W. Hu, S. Liu, M. Xue, F. Wang, and W. Li, ACS Appl. Mater. Interfaces 5, 1003510041 (2013).
http://dx.doi.org/10.1021/am402531m
57.
57.X. Yao, J. Gao, Y. Song, and L. Jiang, Adv. Funct. Mater. 21, 42704276 (2011).
http://dx.doi.org/10.1002/adfm.201100775
58.
58.E. D. Goddard, Colloids Surf. 19, 301329 (1986).
http://dx.doi.org/10.1016/0166-6622(86)80341-9
59.
59.M. Antonetti, S. Henke, and A. Thünemann, Adv. Mater. 8, 4145 (1996).
http://dx.doi.org/10.1002/adma.19960080106
60.
60.S. J. Hutton, J. M. Crowther, and J. P. S. Badyal, Chem. Mater. 12, 22822286 (2000).
http://dx.doi.org/10.1021/cm000123i
61.
61.J. Yang, Z. Zhang, X. Xu, X. Zhu, X. Men, and X. Zhou, J. Mater. Chem. 22, 28342837 (2012).
http://dx.doi.org/10.1039/c2jm15987b
62.
62.P. S. Brown, O. D. L. A. Atkinson, and J. P. S. Badyal, ACS Appl. Mater. Interfaces 6, 75047511 (2014).
http://dx.doi.org/10.1021/am500882y
63.
63.P. S. Brown and B. Bhushan, Sci. Rep. 5, 8701 (2015).
http://dx.doi.org/10.1038/srep08701
64.
64.J. Yang, Z.-Z. Zhang, X.-H. Men, X. Xu, and X. Zhu, New J. Chem. 35, 576580 (2011).
http://dx.doi.org/10.1039/C0NJ00826E
65.
65.J. Yang, Z.-Z. Zhang, X. Xu, X. Men, X. Zhu, and X. Zhu, New J. Chem. 35, 24222426 (2011).
http://dx.doi.org/10.1039/c1nj20401g
66.
66.J. Song, S. Huang, K. Hu, Y. Lu, X. Liu, and W. Xu, J. Mater. Chem. A 1, 1478314789 (2013).
http://dx.doi.org/10.1039/c3ta13807k
67.
67.Z. Yuan, J. Xiao, C. Wang, J. Zeng, S. Xing, and J. Liu, J. Coat. Technol. Res. 8, 773777 (2011).
http://dx.doi.org/10.1007/s11998-011-9365-7
68.
68.Z. Xu, Y. Zhao, H. Wang, X. Wang, and T. Lin, Angew. Chem., Int. Ed. 54, 45274530 (2015).
http://dx.doi.org/10.1002/anie.201411283
69.
69.K. Ellinas, A. Tserepi, and E. Gogolides, Langmuir 27, 39603969 (2011).
http://dx.doi.org/10.1021/la104481p
70.
70.S. M. Kang, S. M. Kim, H. N. Kim, M. K. Kwak, D. H. Tahk, and K. Y. Suh, Soft Matter 8, 85638568 (2012).
http://dx.doi.org/10.1039/c2sm25879j
71.
71.A. K. Gnanappa, D. P. Papageorgiou, E. Gogolides, A. Tserepi, A. G. Papathanasiou, and A. G. Boudouvis, Plasma Processes Polym. 9, 304315 (2012).
http://dx.doi.org/10.1002/ppap.201100124
72.
72.L. Li, V. Breedveld, and D. W. Hess, ACS Appl. Mater. Interfaces 5, 53815386 (2013).
http://dx.doi.org/10.1021/am401436m
73.
73.S. R. Coulson, I. S. Woodward, S. A. Brewer, C. Willis, and J. P. S. Badyal, Chem. Mater. 12, 20312038 (2000).
http://dx.doi.org/10.1021/cm000193p
74.
74.S. Pechook, N. Kornblum, and B. Pokroy, Adv. Funct. Mater. 23, 45724576 (2013).
http://dx.doi.org/10.1002/adfm.201203878
75.
75.J. Y. Lee, S. Pechook, B. Pokroy, and J. S. Yeo, Langmuir 30, 1556815573 (2014).
http://dx.doi.org/10.1021/la5040273
76.
76.W. M. Haynes, Handbook of Chemistry and Physics, 95th ed. (CRC Press, Boca Raton, FL, 2014).
77.
77.M. O’Meara, “Determination of the interfacial tension between oil–steam and oil–air at elevated temperatures,” Master’s thesis, North Carolina State University, Raleigh, NC, USA,2012 retrieved from http://www.lib.ncsu.edu/resolver/1840.16/8150.
78.
78.Silicone fluid technical data, retrieved from http://www.shinetsusilicone-global.com/catalog/pdf/kf96_e.pdf, accessed 26 July 2015.
79.
79.Fluorinert™ Electronic Liquid FC-72, retrieved from http://multimedia.3m.com/mws/media/64892O/fluorinert-electronic-liquid-fc-72.pdf, accessed 7 August 2015.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/1/10.1063/1.4935126
Loading
/content/aip/journal/aplmater/4/1/10.1063/1.4935126
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/1/10.1063/1.4935126
2015-11-03
2016-12-08

Abstract

Nature provides a range of functional surfaces, for example, water-repellent or superhydrophobic surfaces, most common among them the lotus leaf. While water-repellency is widespread in nature, oil-repellency is typically limited to surfaces submerged in water, such as fish scales. To achieve oleophobicity in air, inspiration must be taken from natural structures and chemistries that are not readily available in nature need to be introduced. Researchers usually turn to fluorinated materials to provide the low surface energy that, when combined with bioinspired surface topography, is the key to unlocking oil-repellency. This review presents the state-of-the-art in the fabrication of superoleophobic surfaces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/1/1.4935126.html;jsessionid=GIOfvAyGlrU2m0kmiwJIZZ8K.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/1/10.1063/1.4935126&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/1/10.1063/1.4935126&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/1/10.1063/1.4935126'
Top,Right1,Right2,Right3,