Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Salahuddin and S. Datta, Nano Lett. 8, 405 (2008).
2.J. Son, S. Rajan, S. Stemmer, and S. J. Allen, J. Appl. Phys. 110, 084503 (2011).
3.C. H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis et al., Rev. Mod. Phys. 78, 1185 (2006).
4.H. J. Kim, U. Kim, H. M. Kim, T. H. Kim, H. S. Mun, B.-G. Jeon, K. T. Hong, W.-J. Lee, C. Ju, K. Hoon Kim et al., Appl. Phys. Express. 5, 061102 (2012).
5.X. Luo, Y. S. Oh, A. Sirenko, P. Gao, T. A. Tyson, K. Char, and S. W. Cheong, Appl. Phys. Lett. 100, 172112 (2012).
6.S. Ismail-Beigi, F. J. Walker, S. W. Cheong, K. M. Rabe, and C. H. Ahn, APL Mater. 3, 062510 (2015).
7.H. Mizoguchi, H. W. Eng, and P. M. Woodward, Inorg. Chem. 43, 1667 (2004).
8.L. Bjaalie, B. Himmetoglu, L. Weston, A. Janotti, and C. G. Van de Walle, New J. Phys. 16, 025005 (2014).
9.K. Ganguly, P. Ambwani, P. Xu, J. S. Jeong, K. A. Mkhoyan, C. Leighton, and B. Jalan, APL Mater. 3, 062509 (2015).
10.S. Sallis, D. O. Scanlon, S. C. Chae, N. F. Quackenbush, D. A. Fischer, J. C. Woicik, J. H. Guo, S. W. Cheong, and L. F. J. Piper, Appl. Phys. Lett. 103, 042105 (2013).
11.P. V. Wadekar, J. Alaria, M. O’Sullivan, N. L. O. Flack, T. D. Manning, L. J. Phillips, K. Durose, O. Lozano, S. Lucas, J. B. Claridge et al., Appl. Phys. Lett. 105, 052104 (2014).
12.H. J. Kim, U. Kim, T. H. Kim, J. Kim, H. M. Kim, B. G. Jeon, W. J. Lee, H. S. Mun, K. T. Hong, J. Yu et al., Phys. Rev. B 86, 165205 (2012).
13.L. Pfeiffer and K. W. West, Physica E 20, 57 (2003).
14.D. G. Schlom, APL Mater. 3, 062403 (2015).
15.D. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, and X. Q. Pan, Mater. Sci. Eng.: B 87, 282 (2001).
16.M. E. White, M. Y. Tsai, F. Wu, and J. S. Speck, J. Vac. Sci. Technol., A 26, 1300 (2008).
17.See supplementary material at for high-resolution XRD of a SrSnO3film grown using a Sn source, a cross section TEM image of the film, and high-resolution XRD of a BaSnO3film grown on SrTiO3 using a SnO2 source.[Supplementary Material]
18.M. Y. Tsai, M. E. White, and J. S. Speck, J. Appl. Phys. 106, 024911 (2009).
19.O. Bierwagen, A. Proessdorf, M. Niehle, F. Grosse, A. Trampert, and M. Klingsporn, Cryst. Growth Des. 13, 36453650 (2013).
20.T. Watahiki, W. Braun, and H. Riechert, J. Vac. Sci. Technol., B 27, 262 (2009).
21.K. Sasaki, A. Kuramata, T. Masui, E. G. Vıllora, K. Shimamura, and S. Yamakoshi, Appl. Phys. Express 5, 035502 (2012).
22.Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Pietsch, R. Schewski, M. Albrecht, A. Kwasniewski, S. Ganschow, D. Schulz et al., Phys. Status Solidi A 211, 66 (2013).
23.P. Vogt and O. Bierwagen, Appl. Phys. Lett. 106, 081910 (2015).
24.R. H. Lamoreaux, D. L. Hildenbrand, and L. Brewer, J. Phys. Chem. Ref. Data 16, 419 (1987).
25.J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert, and S. Stemmer, Nat. Mater. 9, 482 (2010).
26.T. A. Cain, A. P. Kajdos, and S. Stemmer, Appl. Phys. Lett. 102, 182101 (2013).
27.F. S. Galasso, Perovskites and High Tc Superconductors (Gordon and Breach Science Publishers, New York, 1990).
28.A. Prakash, J. Dewey, H. Yun, J. S. Jeong, K. A. Mkhoyan, and B. Jalan, J. Vac. Sci. Technol. A 33, 060608 (2015).

Data & Media loading...


Article metrics loading...



High-mobility perovskite BaSnOfilms are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnOfilms have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy(MBE) approach, which supplies pre-oxidized SnO. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO. We demonstrate room temperature electron mobilities of 150 cm2 V−1 s−1 in filmsgrown on PrScO. The results open up a wide range of opportunities for future electronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd