Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4950947
1.
H. J. Goldsmid, Thermoelectric Refrigeration (Temple Press Books Ltd., London, UK, 1964).
2.
Thermoelectrics and Its Energy Harvesting, edited by D. M. Rowe (CRC Press, Boca Raton, FL, 2012).
3.
T. C. Harman, B. Paris, S. E. Miller, and H. L. Goering, J. Phys. Chem. Solids 2, 181 (1957).
http://dx.doi.org/10.1016/0022-3697(57)90081-1
4.
N. S. Platakis, J. Non-Cryst. Solids 24, 365 (1977).
http://dx.doi.org/10.1016/0022-3093(77)90105-3
5.
Y. Sharma and P. Srivastava, Opt. Mater. 33, 899 (2011).
http://dx.doi.org/10.1016/j.optmat.2011.01.020
6.
T. J. Scheidemantel and J. V. Badding, Solid State Commun. 127, 667 (2003).
http://dx.doi.org/10.1016/S0038-1098(03)00518-0
7.
T. J. Scheidemantel, J. F. Meng, and J. V. Badding, J. Phys. Chem. Solids 66, 1744 (2005).
http://dx.doi.org/10.1016/j.jpcs.2005.07.006
8.
J. Zhao, L. Yang, Z. Yu, Y. Wang, C. Li, K. Yang, Z. Liu, and Y. Wang, Inorg. Chem. 55, 39073914 (2016).
http://dx.doi.org/10.1021/acs.inorgchem.6b00073
9.
C. Morin, S. Corallini, J. Carreaud, J.-B. Vaney, G. Delaizir, J.-C. Crivello, E. B. Lopes, A. Piarristeguy, J. Monnier, C. Candolfi, V. Nassif, G. Cuello, A. Pradel, A. P. Goncalves, B. Lenoir, and E. Alleno, Inorg. Chem. 54, 9936 (2015).
http://dx.doi.org/10.1021/acs.inorgchem.5b01676
10.
J.-B. Vaney, J. Carreaud, G. Delaizir, A. Pradel, A. Piarristeguy, C. Morin, E. Alleno, J. Monnier, A. P. Gonçalves, C. Candolfi, A. Dauscher, and B. Lenoir, Adv. Electron. Mater. 1, 1400008 (2015).
http://dx.doi.org/10.1002/aelm.201400008
11.
J.-B. Vaney, J. Carreaud, G. Delaizir, C. Morin, J. Monnier, E. Alleno, A. Piarristeguy, A. Pradel, A. P. Gonçalves, E. B. Lopes, C. Candolfi, A. Dauscher, and B. Lenoir, J. Electron. Mater. 45, 1447 (2015).
http://dx.doi.org/10.1007/s11664-015-4063-3
12.
J.-B. Vaney, J. Carreaud, G. Delaizir, C. Morin, J. Monnier, E. Alleno, A. Piarristeguy, A. Pradel, A. P. Gonçalves, E. B. Lopes, C. Candolfi, A. Dauscher, and B. Lenoir, J. Electron. Mater. 45, 1786 (2016).
http://dx.doi.org/10.1007/s11664-015-4227-1
13.
J.-B. Vaney, J. Carreaud, G. Delaizir, A. Piarristeguy, A. Pradel, E. Alleno, J. Monnier, E. B. Lopes, A. P. Gonçalves, A. Dauscher, C. Candolfi, and B. Lenoir, J. Mater. Chem. C 4, 2329 (2016).
http://dx.doi.org/10.1039/C5TC04267D
14.
J.-B. Vaney, J.-C. Crivello, C. Morin, G. Delaizir, J. Carreaud, A. Piarristeguy, J. Monnier, E. Alleno, A. Pradel, E. B. Lopes, A. P. Gonçalves, A. Dauscher, C. Candolfi, and B. Lenoir, “Electronic structure, low-temperature transport and thermodynamic properties of polymorphic β-As2Te3,” RSC Adv. (to be published).
http://dx.doi.org/10.1039/C6RA01770C
15.
K. Pal and U. V. Waghmare, Appl. Phys. Lett. 105, 062105 (2014).
http://dx.doi.org/10.1063/1.4892941
16.
P. Dziawa, B. J. Kowalski, K. Dybko, R. Buczko, A. Szczerbabow, M. Szot, E. Lusabowska, T. Balasubramanian, B. M. Wojek, M. H. Berntsen, O. Tjernberg, and T. Story, Nat. Mater. 11, 1023 (2012).
http://dx.doi.org/10.1038/nmat3449
17.
T. Liang, Q. Gibson, J. Xiong, M. Hirschberger, S. P. Kodavayur, R. J. Cava, and N. P. Ong, Nat. Commun. 4, 2696 (2013).
http://dx.doi.org/10.1038/ncomms3696
18.
M. Neupane, S.-Y. Xu, R. Sankar, Q. Gibson, Y. J. Wang, I. Belopolski, N. Alidoust, G. Bian, P. P. Shibayev, D. S. Sanchez, Y. Ohtsubo, A. Taleb-Ibrahimi, S. Basak, W.-F. Tsai, H. Lin, T. Dubrakiewicz, R. J. Cava, A. Bansil, F. C. Chou, and M. Z. Hasan, Phys. Rev. B 92, 075131 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.075131
19.
T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Y. Ando, and T. Takahashi, Nat. Phys. 7, 840 (2011).
http://dx.doi.org/10.1038/nphys2058
20.
E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou, R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmanek, B. Lenoir, P. Masschelein, V. Ohorodniichuk, M. Pollet, S. Populoh, D. Ravot, O. Rouleau, and M. Soulier, Rev. Sci. Instrum. 86, 011301 (2015).
http://dx.doi.org/10.1063/1.4905250
21.
C. Drasar, P. Lostak, and C. Uher, J. Electron. Mater. 39, 2162 (2010).
http://dx.doi.org/10.1007/s11664-009-0986-x
22.
S. Sassi, C. Candolfi, J.-B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, and B. Lenoir, Appl. Phys. Lett. 104, 212105 (2014).
http://dx.doi.org/10.1063/1.4880817
23.
C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, and G. J. Snyder, J. Mater. Chem. A 2, 11171 (2014).
http://dx.doi.org/10.1039/c4ta01643b
24.
Q. Zhang, E. Kedebe Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, and Z. Ren, Adv. Energy Mater. 5, 1500360 (2015).
http://dx.doi.org/10.1002/aenm.201500360
25.
J.-S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Nature 459, 965 (2009).
http://dx.doi.org/10.1038/nature08088
26.
Z.-S. Lin, L. Chen, L.-M. Wang, J.-T. Zhao, and L.-M. Wu, Adv. Energy Mater. 25, 4800 (2013).
http://dx.doi.org/10.1002/adma.201302038
27.
J. H. Kim, M. J. Kim, S. Oh, J.-S. Rhyee, S.-D. Park, and D. Ahn, Dalton Trans. 44, 3185 (2015).
http://dx.doi.org/10.1039/c4dt03432e
28.
D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B 46, 6131 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6131
29.
D. G. Cahill and R. O. Pohl, Annu. Rev. Phys. Chem. 39, 93 (1988).
http://dx.doi.org/10.1146/annurev.pc.39.100188.000521
30.
H. Deng, J. Alloys Compd. 656, 695 (2016).
http://dx.doi.org/10.1016/j.jallcom.2015.09.195
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4950947
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4950947
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4950947
2016-06-01
2016-10-01

Abstract

BiTe-based compounds are a well-known class of outstanding thermoelectric materials. β-AsTe, another member of this family, exhibits promising thermoelectric properties around 400 K when appropriately doped. Herein, we investigate the high-temperature thermoelectric properties of the β-AsBiTe solid solution. Powder X-ray diffraction and scanning electron microscopy experiments showed that a solid solution only exists up to = 0.035. We found that substituting Bi for As has a beneficial influence on the thermopower, which, combined with extremely low thermal conductivity values, results in a maximum value of 0.7 at 423 K for = 0.017 perpendicular to the pressing direction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4950947.html;jsessionid=-1vdUUperJ1KhnAhzLeXwsoq.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4950947&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4950947&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4950947'
Top,Right1,Right2,Right3,