Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4952610
1.
C. Wood, Rep. Prog. Phys. 51, 459 (1988).
http://dx.doi.org/10.1088/0034-4885/51/4/001
2.
J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).
http://dx.doi.org/10.1557/mrs2006.49
3.
G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
4.
I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 3627 (2001).
http://dx.doi.org/10.1063/1.1376155
5.
T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 85 (1997).
http://dx.doi.org/10.1039/a602506d
6.
J. He, Y. Liu, and R. Funahashi, J. Mater. Res. 26, 1762 (2011).
http://dx.doi.org/10.1557/jmr.2011.108
7.
G. Saucke, S. Populoh, P. Thiel, W. J. Xie, R. Funahashi, and A. Weidenkaff, J. Appl. Phys. 118, 035106 (2015).
http://dx.doi.org/10.1063/1.4926476
8.
O. Yamashita, S. Tomiyoshi, and K. Makita, J. Appl. Phys. 93, 368 (2003).
http://dx.doi.org/10.1063/1.1525400
9.
X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).
http://dx.doi.org/10.1021/ja111199y
10.
G. S. Nolas, M. Kaeser, R. T. Littleton, and T. M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).
http://dx.doi.org/10.1063/1.1311597
11.
I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R12685
12.
K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).
http://dx.doi.org/10.1557/mrs2006.46
13.
K. Fujita, T. Mochida, and K. Nakamura, in Proceedings ICT 2001, XX International Conference on Thermoelectrics, 2001 (IEEE, 2001), pp. 168171.
http://dx.doi.org/10.1109/ICT.2001.979851
14.
M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).
http://dx.doi.org/10.1063/1.1562337
15.
K. P. Ong, D. J. Singh, and P. Wu, Phys. Rev. B 83, 115110 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115110
16.
M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).
http://dx.doi.org/10.1007/s11664-009-0816-1
17.
P. Jood, R. J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R. W. Siegel, T. Borca-Tasciuc, S. X. Dou, and G. Ramanath, Nano Lett. 11, 4337 (2011).
http://dx.doi.org/10.1021/nl202439h
18.
P. Jood, R. J. Mehta, Y. Zhang, T. Borca-Tasciuc, S. X. Dou, D. J. Singh, and G. Ramanath, RSC Adv. 4, 6363 (2014).
http://dx.doi.org/10.1039/c3ra46813e
19.
T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B 63, 113104 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.113104
20.
H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 392, 306 (2005).
http://dx.doi.org/10.1016/j.jallcom.2004.09.005
21.
S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).
http://dx.doi.org/10.1063/1.1847723
22.
H. C. Wang, C. L. Wang, W. B. Su, J. Liu, Y. Sun, H. Peng, and L. M. Mei, J. Am. Ceram. Soc. 94, 838 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04185.x
23.
S. R. Popuri, A. J. M. Scott, R. A. Downie, M. A. Hall, E. Suard, R. Decourt, M. Pollet, and J.-W. G. Bos, RSC Adv. 4, 33720 (2014).
http://dx.doi.org/10.1039/C4RA06871H
24.
Z. Lu, H. Zhang, W. Lei, D. C. Sinclair, and I. M. Reaney, Chem. Mater. 28, 925 (2016).
http://dx.doi.org/10.1021/acs.chemmater.5b04616
25.
D. Parker and D. J. Singh, Phys. Rev. B 82, 035204 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.035204
26.
J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge University Press, Cambridge, 1972).
27.
G. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).
http://dx.doi.org/10.1016/j.cpc.2006.03.007
28.
L. Zhang and D. J. Singh, Phys. Rev. B 80, 075117 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075117
29.
J. Yang, H. M. Li, T. Wu, W. Q. Zhang, L. D. Chen, and J. H. Yang, Adv. Funct. Mater. 18, 2880 (2008).
http://dx.doi.org/10.1002/adfm.200701369
30.
D. Parker and D. J. Singh, Phys. Rev. X 1, 021005 (2011).
http://dx.doi.org/10.1103/physrevx.1.021005
31.
R. Fei, A. Faghaninia, R. Soklaski, J. A. Yan, C. Lo, and L. Yang, Nano Lett. 14, 6393 (2014).
http://dx.doi.org/10.1021/nl502865s
32.
L. Bjerg, G. K. H. Madsen, and B. B. Iversen, Chem. Mater. 23, 3907 (2011).
http://dx.doi.org/10.1021/cm201271d
33.
D. J. Singh and D. Kasinathan, J. Electron. Mater. 36, 736 (2007).
http://dx.doi.org/10.1007/s11664-007-0154-0
34.
K. P. Ong, D. J. Singh, and P. Wu, Phys. Rev. Lett. 104, 176601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.176601
35.
P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A. P. Mackenzie, Science 351, 1061 (2016).
http://dx.doi.org/10.1126/science.aac8385
36.
A. Kinaci, C. Cevik, and T. Cagin, Phys. Rev. B 82, 155114 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155114
37.
G. K. H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).
http://dx.doi.org/10.1021/ja062526a
38.
S. Wang, Z. Wang, W. Setyawan, N. Mingo, and S. Curtarolo, Phys. Rev. X 1, 021012 (2011).
http://dx.doi.org/10.1103/physrevx.1.021012
39.
S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013).
http://dx.doi.org/10.1038/nmat3568
40.
M. H. Du and D. J. Singh, Phys. Rev. B 81, 144114 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.144114
41.
B. Himmetoglu, A. Janotti, H. Peelaers, A. Alkauskas, and C. G. Van de Walle, Phys. Rev. B 90, 241204 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.241204
42.
S. M. Komirenko, K. W. Kim, M. A. Stroscio, and M. Dutta, Phys. Rev. B 61, 2034 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2034
43.
Y. I. Ravich, B. A. Efimova, and V. I. Tamarchenko, Phys. Status Solidi B 43, 11 (1971).
http://dx.doi.org/10.1002/pssb.2220430102
44.
Y. I. Ravich, B. A. Efimova, and V. I. Tamarchenko, Phys. Status Solidi B 43, 453 (1971).
http://dx.doi.org/10.1002/pssb.2220430202
45.
Y. I. Ravich, Semiconducting Lead Chalcogenides (Springer, Berlin, 1970).
46.
D. J. Singh, Phys. Rev. B 81, 195217 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195217
47.
Y. Pei, A. LaLonde, S. Iwanaga, and G. J. Snyder, Energy Environ. Sci. 4, 2085 (2011).
http://dx.doi.org/10.1039/c0ee00456a
48.
D. J. Singh and L. Nordstrom, Planewaves, Pseudopotentials and the LAPW Method, 2nd ed. (Springer, Berlin, 2006).
49.
K. Schwarz, P. Blaha, and G. Madsen, Comput. Phys. Commun. 147, 71 (2002).
http://dx.doi.org/10.1016/S0010-4655(02)00206-0
50.
L. Cao, E. Sozontov, and J. Zegenhagen, Phys. Status Solidi A 181, 387 (2000).
http://dx.doi.org/10.1002/1521-396X(200010)181:2<387::AID-PSSA387>3.0.CO;2-5
51.
F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
http://dx.doi.org/10.1103/physrevlett.102.226401
52.
D. J. Singh, Phys. Rev. B 82, 205102 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205102
53.
M. Cardona, Phys. Rev. 140, 651 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A651
54.
L. F. Mattheiss, Phys. Rev. B 6, 4718 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4718
55.
J. D. Baniecki, M. Ishii, H. Aso, K. Kurihara, and D. Ricinschi, J. Appl. Phys. 113, 013701 (2013).
http://dx.doi.org/10.1063/1.4770360
56.
H. Uwe, T. Sakudo, and H. Yamaguchi, Jpn. J. Appl. Phys., Part 1 24, 519 (1985).
http://dx.doi.org/10.7567/JJAPS.24S2.519
57.
H. P. R. Frederikse, W. R. Thurber, and W. R. Hosler, Phys. Rev. 134, A442 (1964).
http://dx.doi.org/10.1103/PhysRev.134.A442
58.
H. Ohta, K. Sugiura, and K. Koumoto, Inorg. Chem. 47, 8429 (2008).
http://dx.doi.org/10.1021/ic800644x
59.
G. Xing, J. Sun, K. P. Ong, X. Fan, W. Zheng, and D. J. Singh, APL Mater. 4, 053201 (2016).
http://dx.doi.org/10.1063/1.4941711
60.
K. Kuroki and R. Arita, J. Phys. Soc. Jpn 76, 083707 (2007).
http://dx.doi.org/10.1143/JPSJ.76.083707
61.
X. Chen, D. Parker, and D. J. Singh, Sci. Rep. 3, 3168 (2013).
http://dx.doi.org/10.1038/srep03168
62.
H. Usui, K. Suzuki, K. Kuroki, S. Nakano, K. Kudo, and M. Nohara, Phys. Rev. B 88, 075140 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075140
63.
H. Usui, S. Shibata, and K. Kuroki, Phys. Rev. B 81, 205121 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205121
64.
K. Shirai and K. Yamanaka, J. Appl. Phys. 113, 053705 (2013).
http://dx.doi.org/10.1063/1.4788809
65.
D. Parker, X. Chen, and D. J. Singh, Phys. Rev. Lett. 110, 146601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.146601
66.
N. A. Mecholsky, L. Resca, I. L. Pegg, and M. Fornari, Phys. Rev. B 89, 155131 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155131
67.
J. Sun and D. J. Singh, Phys. Rev. Appl. 5, 024006 (2016).
http://dx.doi.org/10.1103/PhysRevApplied.5.024006
68.
T. A. Cain, A. P. Kajdos, and S. Stemmer, Appl. Phys. Lett. 102, 182101 (2013).
http://dx.doi.org/10.1063/1.4804182
69.
C. Yu, M. L. Scullin, M. Huijben, R. Ramesh, and A. Majumdar, Appl. Phys. Lett. 92, 191911 (2008).
http://dx.doi.org/10.1063/1.2930679
70.
N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, and K. Koumoto, Sci. Rep. 3, 3449 (2013).
http://dx.doi.org/10.1038/srep03449
71.
D.-W. Oh, J. Ravichandran, C.-W. Liang, W. Siemons, B. Jalan, C. M. Brooks, M. Huijben, D. G. Schlom, S. Stemmer, L. W. Martin et al., Appl. Phys. Lett. 98, 221904 (2011).
http://dx.doi.org/10.1063/1.3579993
72.
H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 350, 292 (2003).
http://dx.doi.org/10.1016/S0925-8388(02)00972-6
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4952610
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4952610
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4952610
2016-05-25
2016-10-01

Abstract

We present an investigation of the thermoelectric properties of cubic perovskite SrTiO. The results are derived from a combination of calculated transport functions obtained from Boltzmann transport theory in the constant scattering time approximation based on the electronic structure and existing experimental data for La-doped SrTiO. The figure of merit is modeled with respect to carrier concentration and temperature. The model predicts a relatively high at optimized doping and suggests that the value can reach 0.7 at = 1400 K. Thus can be improved from the current experimental values by carrier concentration optimization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4952610.html;jsessionid=3DxFbw_aJCtcWw6VFIhY1Sag.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4952610&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4952610&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4952610'
Top,Right1,Right2,Right3,