Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4953173
1.
L. E. Bell, Science 321, 1457 (2008).
http://dx.doi.org/10.1126/science.1158899
2.
E. Suhir, J. Appl. Mech. 53, 657 (1986).
http://dx.doi.org/10.1115/1.3171827
3.
E. Suhir and A. Shakouri, J. Appl. Mech. 79, 061010 (2012).
http://dx.doi.org/10.1115/1.4006597
4.
W. G. Pfann, Trans. AIME 194, 747 (1952).
5.
J. Czochralski, Z. Phys. Chem. 92, 219 (1918).
6.
P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1925).
http://dx.doi.org/10.2307/25130058
7.
S. Scherrer and H. Scherrer, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe (CRC Press, Boca Raton, 1995).
8.
L. P. Bulat, I. A. Drabkin, V. V. Karatayev, V. B. Osvenskii, Y. N. Parkhomenko, M. G. Lavrentev, A. I. Sorokin, D. A. Pshenai-Severin, V. D. Blank, G. I. Pivovarov, V. T. Bublik, and N. Y. Tabachkova, J. Electron. Mater. 42, 2110 (2013).
http://dx.doi.org/10.1007/s11664-013-2536-9
9.
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
http://dx.doi.org/10.1126/science.1156446
10.
L. Bulat, V. Bublik, I. Drabkin, V. Karataev, V. Osvenskii, Y. N. Parkhomenko, G. Pivovarov, D. Pshenai-Severin, and N. Y. Tabachkova, J. Electron. Mater. 39, 1650 (2010).
http://dx.doi.org/10.1007/s11664-010-1250-0
11.
L. P. Bulat, I. A. Drabkin, V. V. Karatayev, V. B. Osvenskii, Y. N. Parkhomenko, D. A. Pshenay-Severin, and A. I. Sorokin, J. Electron. Mater. 43, 2121 (2014).
http://dx.doi.org/10.1007/s11664-014-2988-6
12.
J. Yang, R. Chen, X. Fan, W. Zhu, S. Bao, and X. Duan, J. Alloys Compd. 429, 156 (2007).
http://dx.doi.org/10.1016/j.jallcom.2006.04.030
13.
M. K. Keshavarz, D. Vasilevskiy, R. A. Masut, and S. Turenne, J. Electron. Mater. 42, 1429 (2013).
http://dx.doi.org/10.1007/s11664-012-2284-2
14.
Q. Lognoné, F. Gascoin, O. I. Lebedev, L. Lutterotti, S. Gascoin, and D. Chateigner, J. Am. Ceram. Soc. 97, 2038 (2014).
http://dx.doi.org/10.1111/jace.12970
15.
Z. J. Xu, L. P. Hu, P. J. Ying, X. B. Zhao, and T. J. Zhu, Acta Mater. 84, 385 (2015).
http://dx.doi.org/10.1016/j.actamat.2014.10.062
16.
Y. Zheng, Q. Zhang, X. Su, H. Xie, S. Shu, T. Chen, G. Tan, Y. Yan, X. Tang, C. Uher, and G. J. Snyder, Adv. Energy Mater. 5, 1401391 (2015).
http://dx.doi.org/10.1002/aenm.201401391
17.
V. Ravi, S. Firdosy, T. Caillat, E. Brandon, K. Van Der Walde, L. Maricic, and A. Sayir, J. Electron. Mater. 38, 1433 (2009).
http://dx.doi.org/10.1007/s11664-009-0734-2
18.
J. R. Sootsman, J. He, V. P. Dravid, S. Ballikaya, D. Vermeulen, C. Uher, and M. G. Kanatzidis, Chem. Mater. 22, 869 (2010).
http://dx.doi.org/10.1021/cm9016672
19.
Y. Zheng, H. Xie, S. Shu, Y. Yan, H. Li, and X. Tang, J. Electron. Mater. 43, 2017 (2013).
http://dx.doi.org/10.1007/s11664-013-2938-8
20.
Y. Xiao, J. Yang, G. Li, M. Liu, L. Fu, Y. Luo, W. Li, and J. Peng, Intermetallics 50, 20 (2014).
http://dx.doi.org/10.1016/j.intermet.2014.02.010
21.
A. A. Wereszczak, T. P. Kirkland, O. M. Jadaan, and H. Wang, in Advances in Electronic Ceramics II (John Wiley & Sons, Inc., 2010).
22.
D. Farkas, H. Van Swygenhoven, and P. M. Derlet, Phys. Rev. B 66, 060101 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.060101
23.
J.-K. Kim, L. Chen, H.-S. Kim, S.-K. Kim, Y. Estrin, and B. C. Cooman, Metall. Mater. Trans. A 40, 3147 (2009).
http://dx.doi.org/10.1007/s11661-009-9992-0
24.
H. G. van Bueren, Physica 25, 775 (1959).
http://dx.doi.org/10.1016/0031-8914(59)90003-5
25.
H. Alexander and P. Haasen, in Solid State Physics, edited by D. T. Frederick Seitz and E. Henry (Academic Press, 1969), Vol. 22.
26.
G. I. Taylor, Proc. R. Soc. A 145, 362 (1934).
http://dx.doi.org/10.1098/rspa.1934.0106
27.
J. J. Gilman, J. Appl. Phys. 30, 1584 (1959).
http://dx.doi.org/10.1063/1.1735005
28.
M. G. Milvidskii and V. B. Osvenskii, Structure Defects in Semoconductor Single Crystals (Mettallurgia, Moscow, 1984).
29.
A. J. R. de Kock, P. J. Roksnoer, and P. G. T. Boonen, J. Cryst. Growth 30, 279 (1975).
http://dx.doi.org/10.1016/0022-0248(75)90001-9
30.
G. A. Malygin, Phys. Solid State 49, 1013 (2007).
http://dx.doi.org/10.1134/S1063783407060017
31.
N. F. Mott, London, Edinburgh Dublin Philos. Mag. J. Sci. 43, 1151 (1952).
http://dx.doi.org/10.1080/14786441108521024
32.
C. S. Pande, R. A. Masumura, and R. W. Armstrong, Nanostruct. Mater. 2, 323 (1993).
http://dx.doi.org/10.1016/0965-9773(93)90159-9
33.
G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scr. Metall. 23, 2013 (1989).
http://dx.doi.org/10.1016/0036-9748(89)90223-8
34.
R. Suryanarayanan Iyer, C. A. Frey, S. M. L. Sastry, B. E. Waller, and W. E. Buhro, Mater. Sci. Eng., A 264, 210 (1999).
http://dx.doi.org/10.1016/S0921-5093(98)01027-2
35.
M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).
http://dx.doi.org/10.1016/j.pmatsci.2005.08.003
36.
T. G. Nieh and J. Wadsworth, Scr. Metall. Mater. 25, 955 (1991).
http://dx.doi.org/10.1016/0956-716X(91)90256-Z
37.
A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Clarendon Press, 1965).
38.
J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger Publishing Company, 1982).
39.
A. Glezer and V. Pozdnyakov, Nanostruct. Mater. 6, 767 (1995).
http://dx.doi.org/10.1016/0965-9773(95)00171-9
40.
A. A. Rostislav and M. G. Aleksandr, Phys.-Usp. 52, 315 (2009).
http://dx.doi.org/10.3367/ufne.0179.200904a.0337
41.
H. Hahn, P. Mondal, and K. A. Padmanabhan, Nanostruct. Mater. 9, 603 (1997).
http://dx.doi.org/10.1016/S0965-9773(97)00135-9
42.
N. K. Abrikosov and L. V. Poretskaya, Inorg. Mater. (USSR) 1, 462 (1965).
43.
Z. Starý, J. Horák, M. Stordeur, and M. Stölzer, J. Phys. Chem. Solids 49, 29 (1988).
http://dx.doi.org/10.1016/0022-3697(88)90130-8
44.
J. R. Drabble, Progress in Semiconductors (John Wiley & Sons, Inc., New York, 1963).
45.
C. L. Chen, J.-G. Lee, K. Arakawa, and H. Mori, Appl. Phys. Lett. 99, 013108 (2011).
http://dx.doi.org/10.1063/1.3607957
46.
I.-H. Kim, Mater. Lett. 44, 75 (2000).
http://dx.doi.org/10.1016/S0167-577X(00)00005-7
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4953173
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4953173
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4953173
2016-06-30
2016-09-28

Abstract

Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4953173.html;jsessionid=5qFnQVqkkkAkC8PrL85koj48.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4953173&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4953173&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4953173'
Top,Right1,Right2,Right3,