Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4954227
1.
G. D. Mahan, Solid State Phys. 51, 81 (1998).
http://dx.doi.org/10.1016/s0081-1947(08)60190-3
2.
J. Sootsman, D. Chung, and M. Kanatzidis, Angew. Chem., Int. Ed. 48, 8616 (2009).
http://dx.doi.org/10.1002/anie.200900598
3.
I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R12685
4.
I. Terasaki, I. Tsukada, and Y. Iguchi, Phys. Rev. B 65, 195106 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195106
5.
D. J. Singh, Phys. Rev. B 61, 13397 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.13397
6.
D. J. Singh, Phys. Rev. B 68, 020503 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.020503
7.
W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.6869
8.
W. Koshibae and S. Maekawa, Phys. Rev. Lett. 87, 236603 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.236603
9.
K. Kuroki and R. Arita, J. Phys. Soc. Jpn. 76, 083707 (2007).
http://dx.doi.org/10.1143/JPSJ.76.083707
10.
J. He, Y. Liu, and R. Funahashi, J. Mater. Res. 26, 1762 (2011).
http://dx.doi.org/10.1557/jmr.2011.108
11.
K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys., Part 1 40, 4644 (2001).
http://dx.doi.org/10.1143/JJAP.40.4644
12.
M. Ohtaki, Y. Nojiri, and E. Maeda, in Proceedings of The 19th International Conference on Thermoelectrics (ICT2000), edited byM. Rowe (Babrow, Cardiff, 2000), pp. 190195.
13.
M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, and H. Nagai, Scr. Mater. 48, 403 (2003).
http://dx.doi.org/10.1016/S1359-6462(02)00443-8
14.
M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).
http://dx.doi.org/10.1063/1.1562337
15.
Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Alloys Compd. 477, 817 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.10.162
16.
N. Van Nong, N. Pryds, S. Linderoth, and M. Ohtaki, Adv. Mater. 23, 2484 (2011).
http://dx.doi.org/10.1002/adma.201004782
17.
R. Funahashi and M. Shikano, Appl. Phys. Lett. 81, 1459 (2002).
http://dx.doi.org/10.1063/1.1502190
18.
M. Ohtaki and K. Araki, J. Ceram. Soc. Jpn. 119, 813 (2011).
http://dx.doi.org/10.2109/jcersj2.119.813
19.
D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Commun. 146, 97 (2008).
http://dx.doi.org/10.1016/j.ssc.2007.12.033
20.
S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).
http://dx.doi.org/10.1063/1.1847723
21.
Y. Wang, Y. Sui, H. Fan, X. Wang, Y. Su, W. Su, and X. Liu, Chem. Mater. 21, 4653 (2009).
http://dx.doi.org/10.1021/cm901766y
22.
M. Yasukawa and N. Murayama, J. Mater. Sci. Lett. 16, 1731 (1997).
http://dx.doi.org/10.1023/A:1018515223271
23.
G. Xing, J. Sun, K. P. Ong, X. Fan, W. Zheng, and D. J. Singh, APL Mater. 4, 053201 (2016).
http://dx.doi.org/10.1063/1.4941711
24.
G. A. Slack, MRS Proc. 478, 47 (1997).
http://dx.doi.org/10.1557/PROC-478-47
25.
C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater. 22, 3970 (2010).
http://dx.doi.org/10.1002/adma.201000839
26.
P. Pichanusakorn and P. R. Bandaru, Appl. Phys. Lett. 94, 223108 (2009).
http://dx.doi.org/10.1063/1.3147186
27.
I. Terasaki, J. Appl. Phys. 110, 053705 (2011).
http://dx.doi.org/10.1063/1.3626459
28.
P. M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.647
29.
M. Gurvitch, Phys. Rev. B 24, 7404 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.7404
30.
I. Terasaki, S. Shibasaki, S. Yoshida, and W. Kobayashi, Materials 3, 786 (2010).
http://dx.doi.org/10.3390/ma3020786
31.
R. A. Bari, D. Adler, and R. V. Lange, Phys. Rev. B 2, 2898 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.2898
32.
I. Sadakata and E. Hanamura, J. Phys. Soc. Jpn. 34, 882 (1973).
http://dx.doi.org/10.1143/JPSJ.34.882
33.
P. F. Maldague, Phys. Rev. B 16, 2437 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.2437
34.
M. R. Peterson and B. S. Shastry, Phys. Rev. B 82, 195105 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195105
35.
J. Hejtmánek, Z. Jirák, and J. Šebek, Phys. Rev. B 92, 125106 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.125106
36.
K. Yoshida, F. Nakamura, T. Goko, T. Fujita, Y. Maeno, Y. Mori, and S. NishiZaki, Phys. Rev. B 58, 15062 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15062
37.
T. W. Silk, I. Terasaki, T. Fujii, and A. J. Schofield, Phys. Rev. B 79, 134527 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.134527
38.
Y. Horiuchi, W. Tamura, T. Fujii, and I. Terasaki, Supercond. Sci. Technol. 23, 065018 (2010).
http://dx.doi.org/10.1088/0953-2048/23/6/065018
39.
J. Kokalj and R. H. McKenzie, Phys. Rev. B 91, 125143 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.125143
40.
M. Kargarian and G. A. Fiete, Phys. Rev. B 88, 205141 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.205141
41.
V. Zlatić, G. R. Boyd, and J. K. Freericks, Phys. Rev. B 89, 155101 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155101
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4954227
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4954227
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4954227
2016-06-21
2016-12-03

Abstract

Materials’ design for high-performance thermoelectric oxides is discussed. Since chemical stability at high temperature in air is a considerable advantage in oxides, we evaluate thermoelectric power factor in the high temperature limit. We show that highly disordered materials can be good thermoelectric materials at high temperatures, and the effects of strong correlation can further enhance the figure of merit by adding thermopower arising from the spin and orbital degrees of freedom. We also discuss the Kelvin formula as a promising expression for strongly correlated materials and show that the calculation based on the Kelvin formula can be directly compared with the cross-layer thermopower of layered materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4954227.html;jsessionid=ABUZTv9dXIqRI4IyO2zQIz-n.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4954227&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4954227&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4954227'
Top,Right1,Right2,Right3,