Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4954499
1.
A. Sayari, M. Ezzidini, B. Azeza, S. Rekaya, E. Shalaan, S. Yaghmour, A. Al-Ghamdi, L. Sfaxi, R. M’ghaieth, and H. Maaref, Sol. Energy Mater. Sol. Cells 113, 1 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.01.033
2.
B. S. Williams, Nat. Photonics 1, 517 (2007).
http://dx.doi.org/10.1038/nphoton.2007.166
3.
R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, Phys. Rev. Lett. 104, 085501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.085501
4.
C. P. Endres, F. Lewen, T. F. Giesen, S. Schlemmer, D. G. Paveliev, Y. I. Koschurinov, V. M. Ustinov, and A. E. Zhucov, Rev. Sci. Instrum. 78, 043106 (2007).
http://dx.doi.org/10.1063/1.2722401
5.
E. A. Plis, Adv. Mater. Res. 2014, 246769 (2014).
http://dx.doi.org/10.1155/2014/246769
6.
D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, Appl. Phys. Lett. 91, 143507 (2007).
http://dx.doi.org/10.1063/1.2795086
7.
I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009).
http://dx.doi.org/10.1038/NNANO.2008.417
8.
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).
http://dx.doi.org/10.1038/35098012
9.
P. Hołuj, C. Euler, B. Balke, U. Kolb, G. Fiedler, M. M. Müller, T. Jaeger, E. Chávez Angel, P. Kratzer, and G. Jakob, Phys. Rev. B 92, 125436 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.125436
10.
T. Jaeger, P. Hołuj, C. Mix, C. Euler, M. H. Aguirre, S. Populoh, A. Weidenkaff, and G. Jakob, Semicond. Sci. Technol. 29, 124003 (2014).
http://dx.doi.org/10.1088/0268-1242/29/12/124003
11.
P. Komar, T. Jaeger, C. Euler, E. Chávez Angel, U. Kolb, M. M. Müller, B. Balke, M. H. Aguirre, S. Populoh, A. Weidenkaff, and G. Jakob, Phys. Status Solidi A 213, 732 (2015).
http://dx.doi.org/10.1002/pssa.201532445
12.
M. N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K. E. Goodson, J. Appl. Phys. 90, 763 (2001).
http://dx.doi.org/10.1063/1.1374458
13.
J. Ravichandran, A. K. Yadav, R. Cheaito, P. B. Rossen, A. Soukiassian, S. J. Suresha, J. C. Duda, B. M. Foley, C.-H. Lee, Y. Zhu, A. W. Lichtenberger, J. E. Moore, D. A. Muller, D. G. Schlom, P. E. Hopkins, A. Majumdar, R. Ramesh, and M. A. Zurbuchen, Nat. Mater. 13, 168 (2014).
http://dx.doi.org/10.1038/nmat3826
14.
V. Rawat, Y. K. Koh, D. G. Cahill, and T. D. Sands, J. Appl. Phys. 105, 024909 (2009).
http://dx.doi.org/10.1063/1.3065092
15.
S. T. Huxtable, A. R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke, Appl. Phys. Lett. 80, 1737 (2002).
http://dx.doi.org/10.1063/1.1455693
16.
J. Garg and G. Chen, Phys. Rev. B 87, 140302 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.140302
17.
B. Latour, S. Volz, and Y. Chalopin, Phys. Rev. B 90, 014307 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.014307
18.
M. V. Simkin and G. D. Mahan, Phys. Rev. Lett. 84, 927 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.927
19.
Y. Chen, D. Li, J. R. Lukes, Z. Ni, and M. Chen, Phys. Rev. B 72, 174302 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174302
20.
S. Y. Ren and J. D. Dow, Phys. Rev. B 25, 3750 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.3750
21.
Y. Wang, H. Huang, and X. Ruan, Phys. Rev. B 90, 165406 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.165406
22.
K. Termentzidis, P. Chantrenne, J.-Y. Duquesne, and A. Saci, J. Phys.: Condens. Matter 22, 475001 (2010).
http://dx.doi.org/10.1088/0953-8984/22/47/475001
23.
Y. Wang, C. Gu, and X. Ruan, Appl. Phys. Lett. 106, 073104 (2015).
http://dx.doi.org/10.1063/1.4913319
24.
H. Mizuno, S. Mossa, and J.-L. Barrat, Sci. Rep. 5, 14116 (2015).
http://dx.doi.org/10.1038/srep14116
25.
R. Venkatasubramanian, Phys. Rev. B 61, 3091 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.3091
26.
A. Sood, J. A. Rowlette, C. G. Caneau, E. Bozorg-Grayeli, M. Asheghi, and K. E. Goodson, Appl. Phys. Lett. 105, 051909 (2014).
http://dx.doi.org/10.1063/1.4892575
27.
W. Jeitschko, Metall. Trans. 1, 3159 (1970).
http://dx.doi.org/10.1007/BF03038432
28.
T. Graf, C. Felser, and S. S. Parkin, Prog. Solid State Chem. 39, 1 (2011).
http://dx.doi.org/10.1016/j.progsolidstchem.2011.02.001
29.
S. Populoh, M. Aguirre, O. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scr. Mater. 66, 1073 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.03.002
30.
Y. Kimura, H. Ueno, and Y. Mishima, J. Electron. Mater. 38, 934 (2009).
http://dx.doi.org/10.1007/s11664-009-0710-x
31.
C. L. Jia, H. Soltner, G. Jakob, T. Hahn, H. Adrian, and K. Urban, Physica C 210, 1 (1993).
http://dx.doi.org/10.1016/0921-4534(93)90003-9
32.
O. Madelung, U. Rössler, and M. Schulz, in II-VI and I-VII Compounds; Semimagnetic Compounds, edited by O. Madelung, U. Rössler, and M. Schulz (Springer, Berlin, Heidelberg, 1999).
33.
See supplementary material at http://dx.doi.org/10.1063/1.4954499 for detailed description of experimental details and modeling of the thermal conductivity.[Supplementary Material]
34.
C. S. Birkel, W. G. Zeier, J. E. Douglas, B. R. Lettiere, C. E. Mills, G. Seward, A. Birkel, M. L. Snedaker, Y. Zhang, G. J. Snyder, T. M. Pollock, R. Seshadri, and G. D. Stucky, Chem. Mater. 24, 2558 (2012).
http://dx.doi.org/10.1021/cm3011343
35.
O. Appel, M. Schwall, D. Mogilyansky, M. Kohne, B. Balke, and Y. Gelbstein, J. Electron. Mater. 42, 1340 (2013).
http://dx.doi.org/10.1007/s11664-012-2249-5
36.
F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, V. V. Kozyrkov, R. V. Skolozdra, and A. I. Belogorokhov, Z. Phys. B: Condens. Matter 75, 167 (1989).
http://dx.doi.org/10.1007/BF01307996
37.
F. G. Aliev, Physica B 171, 199 (1991).
http://dx.doi.org/10.1016/0921-4526(91)90516-H
38.
F. G. Aliev, V. V. Kozyrkov, V. V. Moshchalkov, R. V. Scolozdra, and K. Durczewski, Z. Phys. B: Condens. Matter 80, 353 (1990).
http://dx.doi.org/10.1007/BF01323516
39.
S. Ouardi, G. H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, C. Felser, S. Lowitzer, D. Kodderitzsch, H. Ebert, and E. Ikenaga, Phys. Rev. B 82, 085108 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085108
40.
G. H. Fecher, E. Rausch, B. Balke, A. Weidenkaff, and C. Felser, Phys. Status Solidi A 213, 716 (2016).
http://dx.doi.org/10.1002/pssa.201532595
41.
C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. 6, 8144 (2015).
http://dx.doi.org/10.1038/ncomms9144
42.
C. Yu, T.-J. Zhu, K. Xiao, J.-J. Shen, S.-H. Yang, and X.-B. Zhao, J. Electron. Mater. 39, 2008 (2010).
http://dx.doi.org/10.1007/s11664-009-1032-8
43.
H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G. J. Snyder, X. Zhao, and T. Zhu, Adv. Funct. Mater. 23, 5123 (2013).
http://dx.doi.org/10.1002/adfm.201300663
44.
S. Adachi, J. Appl. Phys. 102, 063502 (2007).
http://dx.doi.org/10.1063/1.2779259
45.
K.-H. Lin, S. Sullivan, M. J. Cherukara, A. Strachan, T. Feng, X. Ruan, and B. Qiu, nanoMATERIALS nanoscale heat transport, 2016, https://nanohub.org/resources/nmstthermal.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4954499
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4954499
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4954499
2016-06-21
2016-12-09

Abstract

Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSn):(HfNiSn), and 0 ⩽ n ⩽ 6 unit cells. The thermal conductivity () showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit was achieved for n = 4. The measured can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistances.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4954499.html;jsessionid=XLxcF9hLIv2zvMW-g51MvVk0.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4954499&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4954499&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4954499'
Top,Right1,Right2,Right3,