Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. Sayari, M. Ezzidini, B. Azeza, S. Rekaya, E. Shalaan, S. Yaghmour, A. Al-Ghamdi, L. Sfaxi, R. M’ghaieth, and H. Maaref, Sol. Energy Mater. Sol. Cells 113, 1 (2013).
B. S. Williams, Nat. Photonics 1, 517 (2007).
R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, Phys. Rev. Lett. 104, 085501 (2010).
C. P. Endres, F. Lewen, T. F. Giesen, S. Schlemmer, D. G. Paveliev, Y. I. Koschurinov, V. M. Ustinov, and A. E. Zhucov, Rev. Sci. Instrum. 78, 043106 (2007).
E. A. Plis, Adv. Mater. Res. 2014, 246769 (2014).
D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, A. Hood, M. Razeghi, and J. Pellegrino, Appl. Phys. Lett. 91, 143507 (2007).
I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009).
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).
P. Hołuj, C. Euler, B. Balke, U. Kolb, G. Fiedler, M. M. Müller, T. Jaeger, E. Chávez Angel, P. Kratzer, and G. Jakob, Phys. Rev. B 92, 125436 (2015).
T. Jaeger, P. Hołuj, C. Mix, C. Euler, M. H. Aguirre, S. Populoh, A. Weidenkaff, and G. Jakob, Semicond. Sci. Technol. 29, 124003 (2014).
P. Komar, T. Jaeger, C. Euler, E. Chávez Angel, U. Kolb, M. M. Müller, B. Balke, M. H. Aguirre, S. Populoh, A. Weidenkaff, and G. Jakob, Phys. Status Solidi A 213, 732 (2015).
M. N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K. E. Goodson, J. Appl. Phys. 90, 763 (2001).
J. Ravichandran, A. K. Yadav, R. Cheaito, P. B. Rossen, A. Soukiassian, S. J. Suresha, J. C. Duda, B. M. Foley, C.-H. Lee, Y. Zhu, A. W. Lichtenberger, J. E. Moore, D. A. Muller, D. G. Schlom, P. E. Hopkins, A. Majumdar, R. Ramesh, and M. A. Zurbuchen, Nat. Mater. 13, 168 (2014).
V. Rawat, Y. K. Koh, D. G. Cahill, and T. D. Sands, J. Appl. Phys. 105, 024909 (2009).
S. T. Huxtable, A. R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke, Appl. Phys. Lett. 80, 1737 (2002).
J. Garg and G. Chen, Phys. Rev. B 87, 140302 (2013).
B. Latour, S. Volz, and Y. Chalopin, Phys. Rev. B 90, 014307 (2014).
M. V. Simkin and G. D. Mahan, Phys. Rev. Lett. 84, 927 (2000).
Y. Chen, D. Li, J. R. Lukes, Z. Ni, and M. Chen, Phys. Rev. B 72, 174302 (2005).
S. Y. Ren and J. D. Dow, Phys. Rev. B 25, 3750 (1982).
Y. Wang, H. Huang, and X. Ruan, Phys. Rev. B 90, 165406 (2014).
K. Termentzidis, P. Chantrenne, J.-Y. Duquesne, and A. Saci, J. Phys.: Condens. Matter 22, 475001 (2010).
Y. Wang, C. Gu, and X. Ruan, Appl. Phys. Lett. 106, 073104 (2015).
H. Mizuno, S. Mossa, and J.-L. Barrat, Sci. Rep. 5, 14116 (2015).
R. Venkatasubramanian, Phys. Rev. B 61, 3091 (2000).
A. Sood, J. A. Rowlette, C. G. Caneau, E. Bozorg-Grayeli, M. Asheghi, and K. E. Goodson, Appl. Phys. Lett. 105, 051909 (2014).
W. Jeitschko, Metall. Trans. 1, 3159 (1970).
T. Graf, C. Felser, and S. S. Parkin, Prog. Solid State Chem. 39, 1 (2011).
S. Populoh, M. Aguirre, O. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scr. Mater. 66, 1073 (2012).
Y. Kimura, H. Ueno, and Y. Mishima, J. Electron. Mater. 38, 934 (2009).
C. L. Jia, H. Soltner, G. Jakob, T. Hahn, H. Adrian, and K. Urban, Physica C 210, 1 (1993).
O. Madelung, U. Rössler, and M. Schulz, in II-VI and I-VII Compounds; Semimagnetic Compounds, edited by O. Madelung, U. Rössler, and M. Schulz (Springer, Berlin, Heidelberg, 1999).
See supplementary material at for detailed description of experimental details and modeling of the thermal conductivity.[Supplementary Material]
C. S. Birkel, W. G. Zeier, J. E. Douglas, B. R. Lettiere, C. E. Mills, G. Seward, A. Birkel, M. L. Snedaker, Y. Zhang, G. J. Snyder, T. M. Pollock, R. Seshadri, and G. D. Stucky, Chem. Mater. 24, 2558 (2012).
O. Appel, M. Schwall, D. Mogilyansky, M. Kohne, B. Balke, and Y. Gelbstein, J. Electron. Mater. 42, 1340 (2013).
F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, V. V. Kozyrkov, R. V. Skolozdra, and A. I. Belogorokhov, Z. Phys. B: Condens. Matter 75, 167 (1989).
F. G. Aliev, Physica B 171, 199 (1991).
F. G. Aliev, V. V. Kozyrkov, V. V. Moshchalkov, R. V. Scolozdra, and K. Durczewski, Z. Phys. B: Condens. Matter 80, 353 (1990).
S. Ouardi, G. H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, C. Felser, S. Lowitzer, D. Kodderitzsch, H. Ebert, and E. Ikenaga, Phys. Rev. B 82, 085108 (2010).
G. H. Fecher, E. Rausch, B. Balke, A. Weidenkaff, and C. Felser, Phys. Status Solidi A 213, 716 (2016).
C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. 6, 8144 (2015).
C. Yu, T.-J. Zhu, K. Xiao, J.-J. Shen, S.-H. Yang, and X.-B. Zhao, J. Electron. Mater. 39, 2008 (2010).
H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G. J. Snyder, X. Zhao, and T. Zhu, Adv. Funct. Mater. 23, 5123 (2013).
S. Adachi, J. Appl. Phys. 102, 063502 (2007).
K.-H. Lin, S. Sullivan, M. J. Cherukara, A. Strachan, T. Feng, X. Ruan, and B. Qiu, nanoMATERIALS nanoscale heat transport, 2016,

Data & Media loading...


Article metrics loading...



Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSn):(HfNiSn), and 0 ⩽ n ⩽ 6 unit cells. The thermal conductivity () showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit was achieved for n = 4. The measured can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistances.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd