Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4955398
1.
T. Kajikawa, in Thermoelectrics Handbook: Macro to Nano, edited by D. M. Rowe (CRC Press, Boca Raton, FL, 2006), Chap. 50.
2.
J. Yang and F. R. Stabler, in Thermoelectrics and its Energy Harvesting; Modules, Systems, and Applications in Thermoelectrics, edited by D. M. Rowe (CRC Press, Boca Raton, FL, 2012), ch. 25.
3.
G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
4.
A. D. LaLonde, Y. Pei, H. Wang, and G. J. Snyder, Mater. Today 14, 526 (2011).
http://dx.doi.org/10.1016/S1369-7021(11)70278-4
5.
G. Schierning, R. Chavez, R. Schmechel, B. Balke, G. Rogl, and P. Rogl, Transl. Mater. Res. 2, 025001 (2015), and references therein.
http://dx.doi.org/10.1088/2053-1613/2/2/025001
6.
J. R. Salvador, J. Y. Cho, Z. Ye, J. E. Moczygemba, A. J. Thompson, J. W. Sharp, J. D. Koenig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, and A. A. Wereszczak, Phys. Chem. Chem. Phys. 16, 12510 (2014).
http://dx.doi.org/10.1039/C4CP01582G
7.
K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, J. Electron. Mater. 43, 1775 (2014).
http://dx.doi.org/10.1007/s11664-013-2863-x
8.
T. Nakamura, K. Hatakeyama, M. Minowa, Y. Mito, K. Arai, T. Iida, and K. Nishio, J. Electron. Mater. 44, 3592 (2015).
http://dx.doi.org/10.1007/s11664-015-3910-6
9.
M. L. Liu, F. Q. Huang, L. D. Chen, and I. W. Chen, Appl. Phys. Lett. 94, 202103 (2009).
http://dx.doi.org/10.1063/1.3130718
10.
Z. H. Ge, B. P. Zhang, Y. X. Chen, Z. X. Yu, Y. Liu, and J. F. Li, Chem. Commun. 47, 12697 (2011).
http://dx.doi.org/10.1039/c1cc16368j
11.
J. Li, Q. Tan, and J. F. Li, J. Alloys. Compd. 551, 143 (2013).
http://dx.doi.org/10.1016/j.jallcom.2012.09.067
12.
K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).
http://dx.doi.org/10.1143/APEX.5.051201
13.
X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).
http://dx.doi.org/10.1002/aenm.201200650
14.
K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).
http://dx.doi.org/10.1063/1.4789389
15.
P. Jood and M. Ohta, Materials 8, 1124 (2015).
http://dx.doi.org/10.3390/ma8031124
16.
S. Hébert, D. Berthebaud, R. Daou, Y. Bréard, D. Pelloquin, E. Guilmeau, F. Gascoin, O. Lebedev, and A. Maignan, J. Phys.: Condens. Matter 28, 013001 (2016).
http://dx.doi.org/10.1088/0953-8984/28/1/013001
17.
Z. H. Ge, L. D. Zhao, D. Wu, X. Liu, B. P. Zhang, J. F. Li, and J. He, Mater. Today 19, 227 (2016).
http://dx.doi.org/10.1016/j.mattod.2015.10.004
18.
P. Qiu, X. Shi, and L. Chen, Energy Storage Mater. 3, 85 (2016).
http://dx.doi.org/10.1016/j.ensm.2016.01.009
19.
R. Chetty, A. Bali, and R. C. Mallik, J. Mater. Chem. C 3, 12364 (2015).
http://dx.doi.org/10.1039/C5TC02537K
20.
S. R. Hall, J. T. Szymański, and J. M. Stewart, Can. Mineral. 16, 131 (1978).
21.
H. Yang, L. A. Jauregui, G. Zhang, Y. P. Chen, and Y. Wu, Nano Lett. 12, 540 (2012).
http://dx.doi.org/10.1021/nl201718z
22.
C. Xiao, K. Li, J. Zhang, W. Tong, Y. Liu, Z. Li, P. Huang, B. Pan, H. Su, and Y. Xie, Mater. Horiz. 1, 81 (2014).
http://dx.doi.org/10.1039/C3MH00091E
23.
A. Kosuga, M. Matsuzawa, A. Horie, T. Omoto, and R. Funahashi, Jpn. J. Appl. Phys. 54, 061801 (2015).
http://dx.doi.org/10.7567/JJAP.54.061801
24.
D. J. Chakrabarti and D. E. Laughlin, Bull. Alloy Phase Diagrams 4, 254 (1983), and references therein.
http://dx.doi.org/10.1007/BF02868665
25.
G. Will, E. Hinze, and A. R. M. Abdelrahman, Eur. J. Mineral. 14, 591 (2002).
http://dx.doi.org/10.1127/0935-1221/2002/0014-0591
26.
E. Hirahara, J. Phys. Soc. Jpn. 6, 422 (1951).
http://dx.doi.org/10.1143/JPSJ.6.422
27.
Q. Jiang, H. Yan, J. Khaliq, Y. Shen, K. Simpson, and M. J. Reece, J. Mater. Chem. A 2, 9486 (2014).
http://dx.doi.org/10.1039/c4ta01250j
28.
Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, and G. J. Snyder, Adv. Mater. 26, 3974 (2014).
http://dx.doi.org/10.1002/adma.201400515
29.
H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Nat. Mater. 11, 422 (2012).
http://dx.doi.org/10.1038/nmat3273
30.
L. Zhao, X. Wang, F. Y. Fei, J. Wang, Z. Cheng, S. Dou, J. Wang, and G. J. Snyder, J. Mater. Chem. A 3, 9432 (2015).
http://dx.doi.org/10.1039/C5TA01667C
31.
G. Dennler, R. Chmielowski, S. Jacob, F. Capet, P. Roussel, S. Zastrow, K. Nielsch, I. Opahle, and G. K. H. Madsen, Adv. Energy Mater. 4, 1301581 (2014).
http://dx.doi.org/10.1002/aenm.201301581
32.
N. E. Johnson, J. R. Craig, and J. D. Rimstidt, Can. Mineral. 24, 385 (1986).
33.
B. J. Wuensch, Science 141, 804 (1963).
http://dx.doi.org/10.1126/science.141.3583.804
34.
B. J. Wuensch, Z. Kristallogr. 119, 437 (1964).
http://dx.doi.org/10.1524/zkri.1964.119.5-6.437
35.
E. Makovicky and S. Karup Møller, Neues Jahrb. Mineral., Abh. 167, 89 (1994).
36.
A. Pfitzner, M. Evain, and V. Petricek, Acta Crystallogr. B 53, 337 (1997).
http://dx.doi.org/10.1107/S0108768196014024
37.
R. Chetty, D. S. Prem Kumar, G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giester, and R. C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2015).
http://dx.doi.org/10.1039/C4CP04039B
38.
W. Lai, Y. Wang, D. T. Morelli, and X. Lu, Adv. Funct. Mater. 25, 3648 (2015).
http://dx.doi.org/10.1002/adfm.201500766
39.
J. W. Andreasen, E. Makovicky, B. Lebech, and S. K. Møller, Phys. Chem. Miner. 35, 447 (2008).
http://dx.doi.org/10.1007/s00269-008-0239-1
40.
K. Friese, A. Grzechnik, E. Makovicky, T. Balić-Žunić, and S. Karup-Møller, Phys. Chem. Miner. 35, 455 (2008).
http://dx.doi.org/10.1007/s00269-008-0240-8
41.
A. G. Trudu and U. Knittel, Can. Mineral. 36, 1115 (1998).
42.
D. W. Bullett, Phys. Chem. Miner. 14, 485 (1987).
http://dx.doi.org/10.1007/BF00308283
43.
K. Suekuni, Y. Tomizawa, T. Ozaki, and M. Koyano, J. Appl. Phys. 115, 143702 (2014).
http://dx.doi.org/10.1063/1.4871265
44.
X. Lu, D. T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).
http://dx.doi.org/10.1021/cm502570b
45.
Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobola, and B. Lenoir, J. Mater. Chem. C 3, 10476 (2015).
http://dx.doi.org/10.1039/C5TC01636C
46.
F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš, Phys. Rev. Lett. 113, 185501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.185501
47.
F. J. DiSalvo, Science 285, 703 (1999).
http://dx.doi.org/10.1126/science.285.5428.703
48.
J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem., Int. Ed. 48, 8616 (2009).
http://dx.doi.org/10.1002/anie.200900598
49.
T. Barbier, P. Lemoine, S. Gascoin, O. I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A. V. Powell, R. I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.02.045
50.
T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A. V. Powell, and E. Guilmeau, J. Am. Ceram. Soc. 99, 51 (2016).
http://dx.doi.org/10.1111/jace.13838
51.
T. Barbier, P. Lemoine, S. Martinet, M. Eriksson, M. Gilmas, E. Hug, G. Guélou, P. Vaqueiro, A. V. Powell, and E. Guilmeau, RSC Adv. 6, 10044 (2016).
http://dx.doi.org/10.1039/C5RA23218J
52.
J. Heo, G. Laurita, S. Muir, M. A. Subramanian, and D. A. Keszler, Chem. Mater. 26, 2047 (2014).
http://dx.doi.org/10.1021/cm404026k
53.
J. Wang, X. Li, and Y. Bao, Mater. Sci. Forum 847, 161 (2016).
http://dx.doi.org/10.4028/www.scientific.net/MSF.847.161
54.
R. Chetty, A. Bali, M. H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R. C. Mallik, Acta Mater. 100, 266 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.08.040
55.
Y. Bouyrie, S. Sassi, C. Candolfi, J.-B. Vaney, A. Dauscher, and B. Lenoir, Dalton Trans. 45, 7294 (2016).
http://dx.doi.org/10.1039/C6DT00564K
56.
X. Lu and D. T. Morelli, Phys. Chem. Chem. Phys. 15, 5762 (2013).
http://dx.doi.org/10.1039/c3cp50920f
57.
X. Lu and D. T. Morelli, MRS Commun. 3, 129 (2013).
http://dx.doi.org/10.1557/mrc.2013.26
58.
D. J. James, X. Lu, D. T. Morelli, and S. L. Brock, ACS Appl. Mater. Interfaces 7, 23623 (2015).
http://dx.doi.org/10.1021/acsami.5b07141
59.
P. Levinsky, J.-B. Vaney, C. Candolfi, A. Dauscher, B. Lenoir, and J. Hejtmánek, J. Electron. Mater. 45, 1351 (2016).
http://dx.doi.org/10.1007/s11664-015-4032-x
60.
J. Wang, M. Gu, Y. Bao, X. Li, and L. Chen, J. Electron. Mater. 45, 2274 (2016).
http://dx.doi.org/10.1007/s11664-015-4301-8
61.
A. P. Gonçalves, E. B. Lopes, J. Monnier, J. Bourgon, J. B. Vaney, A. Piarristeguy, A. Pradel, B. Lenoir, G. Delaizir, M. F. C. Pereira, E. Alleno, and C. Godart, J. Alloys Compd. 664, 209 (2016).
http://dx.doi.org/10.1016/j.jallcom.2015.12.213
62.
S. Harish, D. Sivaprahasam, M. Battabyal, and R. Gopalan, J. Alloys Compd. 667, 323 (2016).
http://dx.doi.org/10.1016/j.jallcom.2016.01.094
63.
X. Lu and D. Morelli, J. Electron. Mater. 43, 1983 (2014).
http://dx.doi.org/10.1007/s11664-013-2931-2
64.
Y. Bouyrie, C. Candolfi, A. Dauscher, B. Malaman, and B. Lenoir, Chem. Mater. 27, 8354 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b03785
65.
Y. Bouyrie, C. Candolfi, J. B. Vaney, A. Dauscher, and B. Lenoir, J. Electron Matter. 45, 1601 (2016).
http://dx.doi.org/10.1007/s11664-015-4128-3
66.
X. Lu, D. T. Morelli, Y. Wang, W. Lai, Y. Xia, and V. Ozolins, Chem. Mater. 28, 1781 (2016).
http://dx.doi.org/10.1021/acs.chemmater.5b04796
67.
Y. Bouyrie, C. Candolfi, S. Pailhès, M. M. Koza, B. Malaman, A. Dauscher, J. Tobola, O. Boisron, L. Saviot, and B. Lenoir, Phys. Chem. Chem. Phys. 17, 19751 (2015).
http://dx.doi.org/10.1039/C5CP02900G
68.
E. Lara-Curzio, A. F. May, O. Delaire, M. A. McGuire, X. Lu, C. Y. Liu, E. D. Case, and D. T. Morelli, J. Appl. Phys. 115, 193515 (2014).
http://dx.doi.org/10.1063/1.4878676
69.
K. Suekuni, H. I. Tanaka, F. S. Kim, K. Umeo, and T. Takabatake, J. Phys. Soc. Jpn. 84, 103601 (2015).
http://dx.doi.org/10.7566/JPSJ.84.103601
70.
A. F. May, O. Delaire, J. L. Niedziela, E. Lara-Curzio, M. A. Susner, D. L. Abernathy, M. Kirkham, and M. A. McGuire, Phys. Rev. B 93, 064104 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.064104
71.
F. Di Benedetto, G. P. Bernardini, C. Cipriani, C. Emiliani, D. Gatteschi, and M. Romanelli, Phys. Chem. Miner. 32, 155 (2005).
http://dx.doi.org/10.1007/s00269-005-0449-8
72.
S. Kitagawa, T. Sekiya, S. Araki, T. C. Kobayashi, K. Ishida, T. Kambe, T. Kimura, N. Nishimoto, K. Kudo, and M. Nohara, J. Phys. Soc. Jpn. 84, 093701 (2015).
http://dx.doi.org/10.7566/JPSJ.84.093701
73.
T. Suzuki, H. Goto, I. Ishii, Y. Noguchi, S. Kamikawa, K. Suekuni, H. I. Tanaka, and T. Takabatake, Phys. Proc. 75, 443 (2015).
http://dx.doi.org/10.1016/j.phpro.2015.12.054
74.
H. I. Tanaka, K. Suekuni, K. Umeo, T. Nagasaki, H. Sato, G. Kutluk, E. Nishibori, H. Kasai, and T. Takabatake, J. Phys. Soc. Jpn. 85, 014703 (2016).
http://dx.doi.org/10.7566/JPSJ.85.014703
75.
P. G. Spry, S. Merlino, S. Wang, X. Zhang, and P. R. Buseck, Am. Mineral. 79, 750 (1994).
76.
O. V. Frank-Kamenetskaya, I. V. Rozhdestvenskaya, and L. A. Yanulova, J. Struct. Chem. 43, 89 (2002).
http://dx.doi.org/10.1023/A:1016077917390
77.
K. Suekuni, F. S. Kim, and T. Takabatake, J. Appl. Phys. 116, 063706 (2014).
http://dx.doi.org/10.1063/1.4892593
78.
K. Suekuni, F. S. Kim, H. Nishiate, M. Ohta, H. I. Tanaka, and T. Takabatake, Appl. Phys. Lett. 105, 132107 (2014).
http://dx.doi.org/10.1063/1.4896998
79.
F. S. Kim, K. Suekuni, H. Nishiate, M. Ohta, H. I. Tanaka, and T. Takabatake, J. Appl. Phys. 119, 175105 (2016).
http://dx.doi.org/10.1063/1.4948475
80.
E. S. Toberer, A. Zevalkink, and G. J. Snyder, J. Mater. Chem. 21, 15843 (2011).
http://dx.doi.org/10.1039/c1jm11754h
81.
A. Pfitzner and T. Bernert, Z. Kristallogr. 219, 20 (2004).
http://dx.doi.org/10.1524/zkri.219.1.20.25398
82.
V. A. Kovalenker, T. L. Evstigneeva, N. V. Traneva, and L. N. Vyal’sov, Zap. Vses. Mineral. Obshch. 108, 564 (1979).
83.
M. Onoda, X. A. Chen, A. Sato, and H. Wada, Mater. Res. Bull. 35, 1563 (2000).
http://dx.doi.org/10.1016/S0025-5408(00)00347-0
84.
S. Jaulmes, J. Rivet, and P. Laruelle, Acta Cryst. B 33, 540 (1977).
http://dx.doi.org/10.1107/S0567740877004002
85.
A. Suzumura, N. Nagasako, Y. Kinoshita, M. Watanabe, T. Kita, and R. Asahi, Mater. Trans. 56, 858 (2015).
http://dx.doi.org/10.2320/matertrans.E-M2015804
86.
X. A. Chen, H. Wada, A. Sato, and M. Mieno, J. Solid State Chem. 139, 144 (1998).
http://dx.doi.org/10.1006/jssc.1998.7822
87.
J. P. F. Jemetio, Z. Pingjian, and H. Kleinke, J. Alloys Compd. 417, 55 (2006).
http://dx.doi.org/10.1016/j.jallcom.2005.09.030
88.
Y. Goto, Y. Sakai, Y. Kamihara, and M. Matoba, J. Phys. Soc. Jpn. 84, 044706 (2015).
http://dx.doi.org/10.7566/JPSJ.84.044706
89.
A. Suzumura, M. Watanabe, N. Nagasako, and R. Asahi, J. Electron. Mater. 43, 2356 (2014).
http://dx.doi.org/10.1007/s11664-014-3064-y
90.
B. Du, K. Chen, H. Yan, and M. J. Reece, Scr. Mater. 111, 49 (2016).
http://dx.doi.org/10.1016/j.scriptamat.2015.05.031
91.
Y. Goto, Y. Kamihara, and M. Matoba, J. Electron. Mater. 43, 2202 (2014).
http://dx.doi.org/10.1007/s11664-014-3007-7
92.
Y. Goto, Y. Sakai, Y. Kamihara, and M. Matoba, Jpn. J. Appl. Phys. 54, 021801 (2015).
http://dx.doi.org/10.7567/JJAP.54.021801
93.
M. Hasaka, T. Aki, T. Morimura, and S. Kondo, Energy Convers. Manage. 38, 855 (1997).
http://dx.doi.org/10.1016/S0196-8904(96)00098-2
94.
Q. Tan, W. Sun, Z. Li, and J. F. Li, J. Alloys Compd. 672, 558 (2016).
http://dx.doi.org/10.1016/j.jallcom.2016.02.185
95.
C. Bourgès, P. Lemoine, O. I. Lebedev, R. Daou, V. Hardy, B. Malaman, and E. Guilmeau, Acta Mater. 97, 180 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.06.046
96.
S. R. Hall and J. M. Stewart, Acta Cryst. B 29, 579 (1973).
http://dx.doi.org/10.1107/S0567740873002943
97.
Y. Kanazawa, K. Koto, and N. Morimoto, Can. Mineral. 16, 397 (1978), and references therein.
98.
P. Qiu, T. Zhang, Y. Qiu, X. Shi, and L. Chen, Energy Environ. Sci. 7, 4000 (2014).
http://dx.doi.org/10.1039/C4EE02428A
99.
N. Tsujii, J. Electron. Mater. 42, 1974 (2013).
http://dx.doi.org/10.1007/s11664-013-2485-3
100.
N. Tsujii and T. Mori, Appl. Phys. Express 6, 043001 (2013).
http://dx.doi.org/10.7567/APEX.6.043001
101.
N. Tsujii, T. Mori, and Y. Isoda, J. Electron. Mater. 43, 2371 (2014).
http://dx.doi.org/10.1007/s11664-014-3072-y
102.
R. Ang, A. U. Khan, N. Tsujii, K. Takai, R. Nakamura, and T. Mori, Angew. Chem., Int. Ed. 54, 12909 (2015).
http://dx.doi.org/10.1002/anie.201505517
103.
Y. Li, T. Zhang, Y. Qin, T. Day, G. J. Snyder, X. Shi, and L. Chen, J. Appl. Phys. 116, 203705 (2014).
http://dx.doi.org/10.1063/1.4902849
104.
D. Berthebaud, O. I. Lebedev, and A. Maignan, J. Materiomics 1, 68 (2015).
http://dx.doi.org/10.1016/j.jmat.2015.03.007
105.
W. D. Carr and D. T. Morelli, J. Electron. Mater. 45, 1346 (2016).
http://dx.doi.org/10.1007/s11664-015-4029-5
106.
N. Tsujii, F. Meng, K. Tsuchiya, S. Maruyama, and T. Mori, J. Electron. Mater. 45, 1642 (2016).
http://dx.doi.org/10.1007/s11664-015-4147-0
107.
D. Liang, R. Ma, S. Jiao, G. Pang, and S. Feng, Nanoscale 4, 6265 (2012).
http://dx.doi.org/10.1039/c2nr31193c
108.
S. Verma, M. Singh, D. Ahuja, H. Shimose, S. Nishino, M. Miyata, D. Mott, M. Koyano, and S. Maenosono, Jpn. J. Appl. Phys. 53, 120301 (2014).
http://dx.doi.org/10.7567/JJAP.53.120301
109.
G. Guélou, A. V. Powell, and P. Vaqueiro, J. Mater. Chem. C 3, 10624 (2015).
http://dx.doi.org/10.1039/C5TC01704A
110.
J. Paier, R. Asahi, A. Nagoya, and G. Kresse, Phys. Rev. B 79, 115126 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115126
111.
P. Zawadzki, L. L. Baranowski, H. Peng, E. S. Toberer, D. S. Ginley, W. Tumas, A. Zakutayev, and S. Lany, Appl. Phys. Lett. 103, 253902 (2013).
http://dx.doi.org/10.1063/1.4851896
112.
E. Guilmeau, A. Maignan, C. Wan, and K. Koumoto, Phys. Chem. Chem. Phys. 17, 24541 (2015).
http://dx.doi.org/10.1039/C5CP01795E
113.
S. Hébert, W. Kobayashi, H. Muguerra, Y. Bréard, N. Raghavendra, F. Gascoin, E. Guilmeau, and A. Maignan, Phys. Status Solidi A 210, 69 (2013).
http://dx.doi.org/10.1002/pssa.201228505
114.
K. Momma and F. Izumi, J. Appl. Cryst. 44, 1272 (2011).
http://dx.doi.org/10.1107/S0021889811038970
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4955398
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4955398
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4955398
2016-07-12
2016-12-06

Abstract

Synthetic minerals and related systems based on Cu–S are attractive thermoelectric (TE) materials because of their environmentally benign characters and high figures of merit at around 700 K. This overview features the current examples including kesterite, binary copper sulfides, tetrahedrite, colusite, and chalcopyrite, with emphasis on their crystal structures and TE properties. This survey highlights the superior electronic properties in the -type materials as well as the close relationship between crystal structures and thermophysical properties. We discuss the mechanisms of high power factor and low lattice thermal conductivity, approaching higher TE performances for the Cu–S based materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4955398.html;jsessionid=6n6zw9QI6cgtoxqSlV2RrciI.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4955398&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4955398&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4955398'
Top,Right1,Right2,Right3,