Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4955399
1.
K. Koumoto and T. Mori, Thermoelectric Nanomaterials (Springer, 2013).
2.
I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R12685
3.
Y. Masuda, D. Nagahama, H. Itahara, T. Tani, W. S. Seo, and K. Koumoto, J. Mater. Chem. 13, 1094 (2003).
http://dx.doi.org/10.1039/b301758n
4.
D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science 287, 1024 (2000).
http://dx.doi.org/10.1126/science.287.5455.1024
5.
L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, Appl. Phys. Lett. 97, 092118 (2010).
http://dx.doi.org/10.1063/1.3485050
6.
C. Wan, Y. Wang, N. Wang, W. Norimatsu, M. Kusunoki, and K. Koumoto, Sci. Technol. Adv. Mater. 11, 044306 (2010).
http://dx.doi.org/10.1088/1468-6996/11/4/044306
7.
J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).
http://dx.doi.org/10.1007/BF01303701
8.
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
http://dx.doi.org/10.1021/ja800073m
9.
K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
http://dx.doi.org/10.1038/nature01450
10.
K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull. 15, 783 (1980).
http://dx.doi.org/10.1016/0025-5408(80)90012-4
11.
Y. Nakamura and S. Uchida, Phys. Rev. B 47, 8369 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.8369
12.
Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).
http://dx.doi.org/10.1038/372532a0
13.
K. Sugiura, H. Ohta, S. Nakagawa, R. Huang, Y. Ikuhara, K. Nomura, H. Hosono, and K. Koumoto, Appl. Phys. Lett. 94, 152105 (2009).
http://dx.doi.org/10.1063/1.3119631
14.
I. Ohkubo and T. Mori, Chem. Mater. 26, 2532 (2014).
http://dx.doi.org/10.1021/cm403840e
15.
I. Ohkubo and T. Mori, Eur. J. Inorg. Chem. 2015, 3715.
http://dx.doi.org/10.1002/ejic.201500350
16.
I. Ohkubo and T. Mori, Inorg. Chem. 53, 8979 (2014).
http://dx.doi.org/10.1021/ic500902q
17.
I. Ohkubo and T. Mori, Chem. Mater. 27, 7265 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b02015
18.
P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (TU Vienna, 2001).
19.
F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
20.
D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 83, 195134 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195134
21.
T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, Phys. Rev. B 68, 125210 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125210
22.
G. K. H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).
http://dx.doi.org/10.1021/ja062526a
23.
G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).
http://dx.doi.org/10.1016/j.cpc.2006.03.007
24.
D. H. Gregory, M. G. Barker, P. P. Edwards, and D. J. Siddons, Inorg. Chem. 35, 7608 (1996).
http://dx.doi.org/10.1021/ic9607649
25.
H. Jacobs and E. von Pinkowski, J. Less-Common Met. 146, 147 (1989).
http://dx.doi.org/10.1016/0022-5088(89)90371-8
26.
H. Jacobs and B. Hellmann, J. Alloys Compd. 191, 51 (1993).
http://dx.doi.org/10.1016/0925-8388(93)90270-W
27.
See supplementary material at http://dx.doi.org/10.1063/1.4955399 for computational details, electronic structure and orbital characters for the lowest conduction band of NaNbN2.[Supplementary Material]
28.
R. Niewa and F. J. DiSalvo, Chem. Mater. 10, 2733 (1998).
http://dx.doi.org/10.1021/cm980137c
29.
J. Robertson, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 18, 1785 (2000).
http://dx.doi.org/10.1116/1.591472
30.
D. J. Singh, Phys. Rev. B 61, 13397 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.13397
31.
X. Chen, D. Parker, and D. J. Singh, Sci. Rep. 3, 3168 (2013).
http://dx.doi.org/10.1038/srep03168
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4955399
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4955399
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4955399
2016-07-07
2016-09-26

Abstract

Electronic structures and thermoelectric transport properties of α-NaFeO-type 0-electron layered complex nitrides AMN (A = Sr or Na; M = Zr, Hf, Nb, Ta) were evaluated using density-functional theory and Boltzmann theory calculations. Despite the layered crystal structure, all materials had three-dimensional electronic structures. Sr(Zr, Hf)N exhibited isotropic electronic transport properties because of the contribution of the Sr 4 orbitals to the conduction band minimums (CBMs) in addition to that of the Zr 4 (Hf 5) orbitals. Na(Nb,Ta)N showed weak anisotropic electronic transport properties due to the main contribution of the Nb 4 (Ta 5) and N 2 orbitals to the CBMs and no contribution of the Na orbitals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4955399.html;jsessionid=jAqRIjhgBhEb57ahGnQUV1IA.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4955399&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4955399&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4955399'
Top,Right1,Right2,Right3,