Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer-Verlag, Heidelberg, Germany, 2001),
D. M. Rowe, CRC Handbook of Thermoelectrics: Macro to Nano (CRC Press/Taylor & Francis, New York, 2006),
L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M. Z. Hasan, and Y. P. Chen, Nat. Phys. 10, 956 (2014).
P. Ghaemi, R. S. K. Mong, and J. E. Moore, Phys. Rev. Lett. 105, 166603 (2010).
Y. Xu, Z. Gan, and S.-C. Zhang, Phys. Rev. Lett. 112, 226801 (2014).
H. J. Noh, H. Koh, S. J. Oh, J. H. Park, H. D. Kim, J. D. Rameau, T. Valla, T. E. Kidd, P. D. Johnson, Y. Hu, and Q. Li, Europhys. Lett. 81, 57006 (2008).
Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
C. Chen, S. He, H. Weng, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mou, S. Liu, J. He, Y. Peng, Y. Feng, Z. Xie, G. Liu, X. Dong, J. Zhang, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, C. Chen, Z. Xu, X. Dai, Z. Fang, and X. J. Zhou, Proc. Natl. Acad. Sci. U. S. A. 109, 3694 (2012).
M. T. Pettes, J. Maassen, I. Jo, M. S. Lundstrom, and L. Shi, Nano Lett. 13, 5316 (2013).
B. M. Fregoso and S. Coh, J. Phys.: Condens. Matter 27, 422001 (2015).
D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009).
D. Kong, Y. Chen, J. J. Cha, Q. Zhang, J. G. Analytis, K. Lai, Z. Liu, S. S. Hong, K. J. Koski, S.-K. Mo, Z. Hussain, I. R. Fisher, Z.-X. Shen, and Y. Cui, Nat. Nanotechnol. 6, 705 (2011).
J. Zhang, C.-Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q.-K. Xue, X. Ma, and Y. Wang, Nat. Commun. 2, 574 (2011).
D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Nat. Phys. 8, 459 (2012).
W. Chen, S. Chen, D. C. Qi, X. Y. Gao, and A. T. S. Wee, J. Am. Chem. Soc. 129, 10418 (2007).
C. Coletti, C. Riedl, D. S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J. H. Smet, and U. Starke, Phys. Rev. B 81, 235401 (2010).
L. Yu, A. Zubair, E. J. G. Santos, X. Zhang, Y. Lin, Y. Zhang, and T. Palacios, Nano Lett. 15, 4928 (2015).
J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R 64, 1 (2009).
D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, Nano Lett. 10, 2245 (2010).
D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer Science + Business Media, Inc., New York, 2009).
Z. Ding, S. K. Bux, D. J. King, F. L. Chang, T.-H. Chen, S.-C. Huang, and R. B. Kaner, J. Mater. Chem. 19, 2588 (2009).
A. Mavrokefalos, M. T. Pettes, F. Zhou, and L. Shi, Rev. Sci. Instrum. 78, 034901 (2007).
H. J. Goldsmid, Proc. Phys. Soc. 71, 633 (1958).
J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).
K. Wang and C. Petrovic, Phys. Rev. B 86, 155213 (2012).
R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R. W. Siegel, T. Borca-Tasciuc, and G. Ramanath, Nat. Mater. 11, 233 (2012).
Y. Zhang, H. Wang, S. Kräemer, Y. Shi, F. Zhang, M. Snedaker, K. Ding, M. Moskovits, G. J. Snyder, and G. D. Stucky, ACS Nano 5, 3158 (2011).
C. Schumacher, K. G. Reinsberg, R. Rostek, L. Akinsinde, S. Baessler, S. Zastrow, G. Rampelberg, P. Woias, C. Detavernier, J. A. C. Broekaert, J. Bachmann, and K. Nielsch, Adv. Energy Mater. 3, 95 (2013).
S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963).

Data & Media loading...


Article metrics loading...



We report the in-plane thermoelectric properties of suspended (Bi Sb )Te nanoplates with ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing -type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at ∼ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F-TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin BiTe nanoplates of comparable thickness and in the range of 0.2–0.7 W m−1 K−1 at room temperature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd