Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4955400
1.
G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer-Verlag, Heidelberg, Germany, 2001), http://www.springer.com/us/book/9783540412458.
2.
D. M. Rowe, CRC Handbook of Thermoelectrics: Macro to Nano (CRC Press/Taylor & Francis, New York, 2006), https://www.crcpress.com/Thermoelectrics-Handbook-Macro-to-Nano/Rowe/9780849322648.
3.
L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12727
4.
Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).
http://dx.doi.org/10.1126/science.1173034
5.
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys127410.1038/nphys1274
6.
Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M. Z. Hasan, and Y. P. Chen, Nat. Phys. 10, 956 (2014).
http://dx.doi.org/10.1038/nphys3140
7.
P. Ghaemi, R. S. K. Mong, and J. E. Moore, Phys. Rev. Lett. 105, 166603 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.166603
8.
Y. Xu, Z. Gan, and S.-C. Zhang, Phys. Rev. Lett. 112, 226801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.226801
9.
H. J. Noh, H. Koh, S. J. Oh, J. H. Park, H. D. Kim, J. D. Rameau, T. Valla, T. E. Kidd, P. D. Johnson, Y. Hu, and Q. Li, Europhys. Lett. 81, 57006 (2008).
http://dx.doi.org/10.1209/0295-5075/81/57006
10.
Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195208
11.
C. Chen, S. He, H. Weng, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mou, S. Liu, J. He, Y. Peng, Y. Feng, Z. Xie, G. Liu, X. Dong, J. Zhang, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, C. Chen, Z. Xu, X. Dai, Z. Fang, and X. J. Zhou, Proc. Natl. Acad. Sci. U. S. A. 109, 3694 (2012).
http://dx.doi.org/10.1073/pnas.1115555109
12.
M. T. Pettes, J. Maassen, I. Jo, M. S. Lundstrom, and L. Shi, Nano Lett. 13, 5316 (2013).
http://dx.doi.org/10.1021/nl402828s
13.
B. M. Fregoso and S. Coh, J. Phys.: Condens. Matter 27, 422001 (2015).
http://dx.doi.org/10.1088/0953-8984/27/42/422001
14.
D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009).
http://dx.doi.org/10.1038/nature08234
15.
D. Kong, Y. Chen, J. J. Cha, Q. Zhang, J. G. Analytis, K. Lai, Z. Liu, S. S. Hong, K. J. Koski, S.-K. Mo, Z. Hussain, I. R. Fisher, Z.-X. Shen, and Y. Cui, Nat. Nanotechnol. 6, 705 (2011).
http://dx.doi.org/10.1038/nnano.2011.172
16.
J. Zhang, C.-Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q.-K. Xue, X. Ma, and Y. Wang, Nat. Commun. 2, 574 (2011).
http://dx.doi.org/10.1038/ncomms1588
17.
D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. Fuhrer, Nat. Phys. 8, 459 (2012).
http://dx.doi.org/10.1038/nphys2286
18.
W. Chen, S. Chen, D. C. Qi, X. Y. Gao, and A. T. S. Wee, J. Am. Chem. Soc. 129, 10418 (2007).
http://dx.doi.org/10.1021/ja071658g
19.
C. Coletti, C. Riedl, D. S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J. H. Smet, and U. Starke, Phys. Rev. B 81, 235401 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235401
20.
L. Yu, A. Zubair, E. J. G. Santos, X. Zhang, Y. Lin, Y. Zhang, and T. Palacios, Nano Lett. 15, 4928 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b00668
21.
J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R 64, 1 (2009).
http://dx.doi.org/10.1016/j.mser.2008.12.001
22.
D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, Nano Lett. 10, 2245 (2010).
http://dx.doi.org/10.1021/nl101260j
23.
D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer Science + Business Media, Inc., New York, 2009).
24.
Z. Ding, S. K. Bux, D. J. King, F. L. Chang, T.-H. Chen, S.-C. Huang, and R. B. Kaner, J. Mater. Chem. 19, 2588 (2009).
http://dx.doi.org/10.1039/B820226E
25.
A. Mavrokefalos, M. T. Pettes, F. Zhou, and L. Shi, Rev. Sci. Instrum. 78, 034901 (2007).
http://dx.doi.org/10.1063/1.2712894
26.
H. J. Goldsmid, Proc. Phys. Soc. 71, 633 (1958).
http://dx.doi.org/10.1088/0370-1328/71/4/312
27.
J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).
http://dx.doi.org/10.1016/0022-3697(88)90182-5
28.
K. Wang and C. Petrovic, Phys. Rev. B 86, 155213 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.155213
29.
R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R. W. Siegel, T. Borca-Tasciuc, and G. Ramanath, Nat. Mater. 11, 233 (2012).
http://dx.doi.org/10.1038/nmat3213
30.
Y. Zhang, H. Wang, S. Kräemer, Y. Shi, F. Zhang, M. Snedaker, K. Ding, M. Moskovits, G. J. Snyder, and G. D. Stucky, ACS Nano 5, 3158 (2011).
http://dx.doi.org/10.1021/nn2002294
31.
C. Schumacher, K. G. Reinsberg, R. Rostek, L. Akinsinde, S. Baessler, S. Zastrow, G. Rampelberg, P. Woias, C. Detavernier, J. A. C. Broekaert, J. Bachmann, and K. Nielsch, Adv. Energy Mater. 3, 95 (2013).
http://dx.doi.org/10.1002/aenm.201200417
32.
S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963).
http://dx.doi.org/10.1016/0022-3697(63)90207-5
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4955400
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4955400
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4955400
2016-07-25
2016-09-26

Abstract

We report the in-plane thermoelectric properties of suspended (Bi Sb )Te nanoplates with ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing -type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at ∼ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F-TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin BiTe nanoplates of comparable thickness and in the range of 0.2–0.7 W m−1 K−1 at room temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4955400.html;jsessionid=89Z2kx7Na88AszDwJxS9fxYP.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4955400&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4955400&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4955400'
Top,Right1,Right2,Right3,