Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4955401
1.
D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, 1995), p. 701.
2.
M. W. Gaultois, T. D. Sparks, C. K. H. Borg, R. Seshadri, W. D. Bonificio, and D. R. Clarke, Chem. Mater. 25, 2911 (2013).
http://dx.doi.org/10.1021/cm400893e
3.
H. J. Goldsmid and R. W. Douglas, Br. J. Appl. Phys. 5, 458 (1954).
http://dx.doi.org/10.1088/0508-3443/5/12/513
4.
J. S. Tse and M. A. White, J. Phys. Chem. 92, 5006 (1988).
http://dx.doi.org/10.1021/j100328a036
5.
L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16631
6.
Y. Wang, C. Gu, and X. Ruan, Appl. Phys. Lett. 106, 073104 (2015).
http://dx.doi.org/10.1063/1.4913319
7.
J. Yang, H.-L. Yip, and A. K.-Y. Jen, Adv. Energy Mater. 3, 549 (2013).
http://dx.doi.org/10.1002/aenm.201200514
8.
J. Yan, P. Gorai, B. Ortiz, S. Miller, S. A. Barnett, T. Mason, V. Stevanović, and E. S. Toberer, Energy Environ. Sci. 8, 983 (2015).
http://dx.doi.org/10.1039/C4EE03157A
9.
A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, and I. Tanaka, Phys. Rev. Lett. 115, 1 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.205901
10.
D. P. Spitzer, J. Phys. Chem. Solids 31, 19 (1970).
http://dx.doi.org/10.1016/0022-3697(70)90284-2
11.
B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson, Phys. Rev. B 56, 15081 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.15081
12.
B. Pamplin, J. Phys. Chem. Solids 25, 675 (1964).
http://dx.doi.org/10.1016/0022-3697(64)90176-3
13.
C. H. L. Goodman, J. Phys. Chem. Solids 6, 305 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90050-7
14.
S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, Phys. Rev. B 79, 165211 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165211
15.
S. Chen, X. G. Gong, C.-G. Duan, Z.-Q. Zhu, J.-H. Chu, A. Walsh, Y.-G. Yao, J. Ma, and S.-H. Wei, Phys. Rev. B 83, 245202 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245202
16.
S. Chen, W.-J. Yin, J.-H. Yang, X. G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett. 95, 052102 (2009).
http://dx.doi.org/10.1063/1.3193662
17.
J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1960), p. 554.
18.
D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Appl. Phys. Lett. 91, 231922 (2007).
http://dx.doi.org/10.1063/1.2822891
19.
J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, Phys. Rev. B 89, 205203 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.205203
20.
A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B 91, 094306 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.094306
21.
A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
http://dx.doi.org/10.1016/j.scriptamat.2015.07.021
22.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
23.
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136406
24.
J. M. Skelton, D. Tiana, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, J. Chem. Phys. 143, 064710 (2015).
http://dx.doi.org/10.1063/1.4928058
25.
B. Qiu, H. Bao, G. Zhang, Y. Wu, and X. Ruan, Comput. Mater. Sci. 53, 278 (2012).
http://dx.doi.org/10.1016/j.commatsci.2011.08.016
26.
N. Vagelatos, D. Wehe, and J. S. King, J. Chem. Phys. 60, 3613 (1974).
http://dx.doi.org/10.1063/1.1681581
27.
O. Brafman and S. S. Mitra, Phys. Rev. 171, 931 (1968).
http://dx.doi.org/10.1103/PhysRev.171.931
28.
H.-M. Kagaya and T. Soma, Phys. Status Solidi 142, 411 (1987).
http://dx.doi.org/10.1002/pssb.2221420210
29.
J. S. Browder and S. S. Ballard, Appl. Opt. 16, 3214 (1977).
http://dx.doi.org/10.1364/AO.16.003214
30.
T. F. Smith and G. K. White, J. Phys. C: Solid State Phys. 8, 2031 (1975).
http://dx.doi.org/10.1088/0022-3719/8/13/012
31.
M. Akdogan and R. Eryigit, J. Phys.: Condens. Matter 14, 7493 (2002).
http://dx.doi.org/10.1088/0953-8984/14/32/309
32.
A. H. Romero, M. Cardona, R. K. Kremer, R. Lauck, G. Siegle, C. Hoch, A. Munoz, and A. Schindler, Phys. Rev. B 83, 195208 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195208
33.
N. Yamamoto, H. Horinaka, and T. Miyauchi, Jpn. J. Appl. Phys. 18, 255 (1979).
http://dx.doi.org/10.1143/JJAP.18.255
34.
I. V. Bodnar and N. S. Orlova, Phys. Status Solidi 78, K59 (1983).
http://dx.doi.org/10.1002/pssa.2210780155
35.
M. Guc, A. P. Litvinchuk, S. Levcenko, M. Y. Valakh, I. V. Bodnar, V. M. Dzhagan, V. Izquierdo-Roca, E. Arushanov, and A. Pérez-Rodríguez, RSC Adv. 6, 13278 (2016).
http://dx.doi.org/10.1039/C5RA26844C
36.
O. M. Madelung, Semiconductors: Data Handbook, 3rd ed. (Springer, Berlin, 2003), p. 691.
37.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4955401
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4955401
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4955401
2016-07-12
2016-12-04

Abstract

In semiconductors almost all heat is conducted by phonons (lattice vibrations), which is limited by their quasi-particle lifetimes. Phonon-phonon interactions represent scattering mechanisms that produce thermal resistance. In thermoelectric materials, this resistance due to anharmonicity should be maximised for optimal performance. We use a first-principles lattice-dynamics approach to explore the changes in lattice dynamics across an isostructural series where the average atomic mass is conserved: ZnS to CuGaS to CuZnGeS. Our results demonstrate an enhancement of phonon interactions in the multernary materials and confirm that lattice thermal conductivity can be controlled independently of the average mass and local coordination environments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4955401.html;jsessionid=BdDyAV6IRQq9piqNobNNZgfu.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4955401&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4955401&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4955401'
Top,Right1,Right2,Right3,