Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. A. Slack, in CRC Handbook of Thermoelectrics, edited by D. M. Row (Boca Raton, 1995);
C. B. Vining, Nat. Mater. 7(10), 765 (2008).
M. Christensen and B. B. Iversen, Chem. Mater. 19(20), 4896 (2007);
B. C. Chakoumakos, B. C. Sales, D. G. Mandrus, and G. S. Nolas, J. Alloys Compd. 296(1-2), 80 (2000);
M. Christensen, S. Johnsen, and B. B. Iversen, Dalton Trans. 39(4), 978 (2010);
C. Uher, in Recent Trends in Thermoelectric Materials Research I [Semicond. Semimetals 69, 139 (2001)].
X. Lu, D. T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27(2), 408 (2015).
X. Lu, D. T. Morelli, Y. Xia, V. O. Fei Zhou, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3(3), 342 (2013).
K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113(4), 043712 (2013).
J. Heo, G. Laurita, S. Muir, M. A. Subramanian, and D. A. Keszler, Chem. Mater. 26(6), 2047 (2014).
B. J. Wuensch, Z. Kristallogr. 119, 437 (1964);
A. Pfitzner, M. Evain, and V. Petricek, Acta Crystallogr., Sect. B: Struct. Sci. 53, 337 (1997).
W. Lai, Y. Wang, D. T. Morelli, and X. Lu, Adv. Funct. Mater. 25(24), 3648 (2015).
Y. Bouyrie, C. Candolfi, S. Pailhes, M. M. Koza, B. Malaman, A. Dauscher, J. Tobola, O. Boisron, L. Saviot, and B. Lenoir, Phys. Chem. Chem. Phys. 17(30), 19751 (2015);
A. F. May, O. Delaire, J. L. Niedziela, E. Lara-Curzio, M. A. Susner, D. L. Abernathy, M. Kirkham, and M. A. McGuire, Phys. Rev. B 93, 064104 (2016).
G. Kresse and J. Hafner, Phys. Rev. B 47(1), 558 (1993).
G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6(1), 15 (1996).
G. Kresse and J. Furthmuller, Phys. Rev. B 54(16), 11169 (1996).
G. Kresse and J. Hafner, Phys. Rev. B 49(20), 14251 (1994).
G. Kresse and D. Joubert, Phys. Rev. B 59(3), 1758 (1999).
P. E. Blochl, Phys. Rev. B 50(24), 17953 (1994).
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78(7), 1396 (1997).
F. Fernandez-Alonso and D. L. Price, Neutron Scattering (Academic Press, 2013).
T. A. Manz and D. S. Sholl, J. Chem. Theory Comput. 8(8), 2844 (2012).
J. Baumert, C. Gutt, V. P. Shpakov, J. S. Tse, M. Krisch, M. Muller, H. Requardt, D. D. Klug, S. Janssen, and W. Press, Phys. Rev. B 68, 174301 (2003);
J. S. Tse, Z. Li, and K. Uehara, Europhys. Lett. 56(2), 261 (2001).
G. A. Slack, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1979), Vol. 34.
E. Lara-Curzio, A. F. May, O. Delaire, M. A. McGuire, X. Lu, C.-Y. Liu, E. D. Case, and D. T. Morelli, J. Appl. Phys. 115(19), 193515 (2014).
X. Fan, E. D. Case, X. Lu, and D. T. Morelli, J. Mater. Sci. 48(21), 7540 (2013).

Data & Media loading...


Article metrics loading...



CuSbS-based tetrahedrites are high-performance thermoelectrics that contain earth-abundant and environmentally friendly elements. At present, the mechanistic understanding of their low lattice thermal conductivity (<1 W m−1 K−1 at 300 K) remains limited. This work applies first-principles molecular dynamics simulations, along with inelastic neutron scattering (INS) experiments, to study the incoherent and coherent atomic dynamics in CuNiZnSbS, in order to deepen our insight into mechanisms of anomalous dynamic behavior and low lattice thermal conductivity in tetrahedrites. Our study of incoherent dynamics reveals the anomalous “phonon softening upon cooling” behavior commonly observed in inelastic neutron scattering data. By examining the dynamic Cu-Sb distances inside the Sb[CuS]Sb cage, we ascribe softening to the decreased anharmonic “rattling” of Cu in the cage. On the other hand, our study of coherent dynamics reveals that acoustic modes are confined in a small region of dynamic scattering space, which we hypothesize leads to a minimum phonon mean free path. By assuming a Debye model, we obtain a lattice minimum thermal conductivity value consistent with experiments. We believe this study furthers our understanding of the atomic dynamics of tetrahedrite thermoelectrics and will more generally help shed light on the origin of intrinsically low lattice thermal conductivity in these and other structurally similar materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd