Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4961679
1.
A. M. Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, Mater. Sci. Eng., R 97, 122 (2015).
http://dx.doi.org/10.1016/j.mser.2015.08.001
2.
C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater. 22, 39703980 (2010).
http://dx.doi.org/10.1002/adma.201000839
3.
M. Ibáñez, R. Zamani, S. Gorsse, J. Fan, S. Ortega, D. Cadavid, J. R. Morante, J. Arbiol, and A. Cabot, ACS Nano 7, 25732586 (2013).
http://dx.doi.org/10.1021/nn305971v
4.
J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem., Int. Ed. 48, 86168639 (2009).
http://dx.doi.org/10.1002/anie.200900598
5.
Y. Zhang and G. D. Stucky, Chem. Mater. 26, 837848 (2013).
http://dx.doi.org/10.1021/cm402150j
6.
Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357376 (2009).
http://dx.doi.org/10.1002/adfm.200901512
7.
J. He, M. G. Kanatzidis, and V. P. Dravid, Mater. Today 16, 166176 (2013).
http://dx.doi.org/10.1016/j.mattod.2013.05.004
8.
L.-D. Zhao, V. P. Dravid, and M. G. Kanatzidis, Energy Environ. Sci. 7, 251268 (2014).
http://dx.doi.org/10.1039/C3EE43099E
9.
M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 22252230 (2011).
http://dx.doi.org/10.1021/nl201206d
10.
S. V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.214304
11.
M. Zebarjadi, B. Liao, K. Esfarjani, M. Dresselhaus, and G. Chen, Adv. Mater. 25, 15771582 (2013).
http://dx.doi.org/10.1002/adma.201204802
12.
W. Shen, T. Tian, B. Liao, and M. Zebarjadi, Phys. Rev. B 90, 075301 (2014).
http://dx.doi.org/10.1103/physrevb.90.075301
13.
J. Y. Lee and R.-K. Lee, Phys. Rev. B 89, 155425 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155425
14.
M. Ibáñez, Z. Luo, A. Genc, L. Piveteau, S. Ortega, D. Cadavid, O. Dobrozhan, Y. Liu, M. Nachtegaal, M. Zebarjadi, J. Arbiol, M. V. Kovalenko, and A. Cabot, Nat. Commun. 7, 10766 (2016).
http://dx.doi.org/10.1038/ncomms10766
15.
M. Koirala, H. Zhao, M. Pokharel, S. Chen, T. Dahal, C. Opeil, G. Chen, and Z. Ren, Appl. Phys. Lett. 102, 213111 (2013).
http://dx.doi.org/10.1063/1.4808094
16.
J. M. O. Zide, J.-H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J. P. Feser, D. Xu, S. L. Singer, Z. X. Bian, A. Majumdar, J. E. Bowers, A. Shakouri, and A. C. Gossard, J. Appl. Phys. 108, 123702 (2010).
http://dx.doi.org/10.1063/1.3514145
17.
J. P. Heremans, C. M. Thrush, and D. T. Morelli, J. Appl. Phys. 98, 063703 (2005).
http://dx.doi.org/10.1063/1.2037209
18.
E. Lee, J. Ko, J.-Y. Kim, W.-S. Seo, S.-M. Choi, K. H. Lee, W. Shim, and W. Lee, J. Mater. Chem. C 4, 13131319 (2016).
http://dx.doi.org/10.1039/C5TC03934G
19.
F. R. Sie, C. H. Kuo, C. S. Hwang, Y. W. Chou, C. H. Yeh, Y. L. Lin, and J. Y. Huang, J. Electron. Mater. 45, 19271934 (2016).
http://dx.doi.org/10.1007/s11664-015-4297-0
20.
Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, and L. Chen, Adv. Funct. Mater. 25, 966976 (2015).
http://dx.doi.org/10.1002/adfm.201402663
21.
S. Sumithra, N. J. Takas, D. K. Misra, W. M. Nolting, P. F. P. Poudeu, and K. L. Stokes, Adv. Energy Mater. 1, 11411147 (2011).
http://dx.doi.org/10.1002/aenm.201100338
22.
Y. Zhang, M. L. Snedaker, C. S. Birkel, S. Mubeen, X. Ji, Y. Shi, D. Liu, X. Liu, M. Moskovits, and G. D. Stucky, Nano Lett. 12, 10751080 (2012).
http://dx.doi.org/10.1021/nl204346g
23.
I.-H. Kim, S.-M. Choi, W.-S. Seo, and D.-I. Cheong, Nanoscale Res. Lett. 7, 16 (2012).
http://dx.doi.org/10.1186/1556-276X-7-1
24.
K.-H. Lee, H.-S. Kim, S.-I. Kim, E.-S. Lee, S.-M. Lee, J.-S. Rhyee, J.-Y. Jung, I.-H. Kim, Y. Wang, and K. Koumoto, J. Electron. Mater. 41, 11651169 (2012).
http://dx.doi.org/10.1007/s11664-012-1913-0
25.
T. Sun, M. K. Samani, N. Khosravian, K. M. Ang, Q. Yan, B. K. Tay, and H. H. Hng, Nano Energy 8, 223230 (2014).
http://dx.doi.org/10.1016/j.nanoen.2014.06.011
26.
S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, Nanotechnology 24, 285702 (2013).
http://dx.doi.org/10.1088/0957-4484/24/28/285702
27.
M. V. Warren, J. C. Canniff, H. Chi, F. Naab, V. A. Stoica, R. Clarke, C. Uher, and R. S. Goldman, J. Appl. Phys. 117, 065101 (2015).
http://dx.doi.org/10.1063/1.4906992
28.
M. V. Warren, J. C. Canniff, H. Chi, E. Morag, F. Naab, V. A. Stoica, R. Clarke, C. Uher, and R. S. Goldman, J. Appl. Phys. 114, 043704 (2013).
http://dx.doi.org/10.1063/1.4816087
29.
H. Zhao, M. Pokharel, S. Chen, B. Liao, K. Lukas, C. Opeil, G. Chen, and Z. Ren, Nanotechnology 23, 505402 (2012).
http://dx.doi.org/10.1088/0957-4484/23/50/505402
30.
X. Zhou, G. Wang, L. Zhang, H. Chi, X. Su, J. Sakamoto, and C. Uher, J. Mater. Chem. 22, 29582964 (2012).
http://dx.doi.org/10.1039/C2JM15010G
31.
X. Zhao, H. Wang, S. Wang, D. Elhadj, J. Wang, and G. Fu, RSC Adv. 4, 5714857152 (2014).
http://dx.doi.org/10.1039/C4RA07319C
32.
J. Zheng, J. Peng, Z. Zheng, M. Zhou, E. Thompson, J. Yang, and W. Xiao, Front. Chem. 3, 53 (2015).
http://dx.doi.org/10.3389/fchem.2015.00053
33.
N. Van Nong, N. Pryds, S. Linderoth, and M. Ohtaki, Adv. Mater. 23, 24842490 (2011).
http://dx.doi.org/10.1002/adma.201004782
34.
Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Alloys Compd. 477, 817821 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.10.162
35.
M. Ito and J. Sumiyoshi, J. Jpn. Soc. Powder Powder Metall. 55, 9095 (2007).
http://dx.doi.org/10.2497/jjspm.55.90
36.
M. Ibáñez, R. J. Korkosz, Z. Luo, P. Riba, D. Cadavid, S. Ortega, A. Cabot, and M. G. Kanatzidis, J. Am. Chem. Soc. 137, 40464049 (2015).
http://dx.doi.org/10.1021/jacs.5b00091
37.
L.-I. Hung, C.-K. Tsung, W. Huang, and P. Yang, Adv. Mater. 22, 19101914 (2010).
http://dx.doi.org/10.1002/adma.200903947
38.
K. Kravchyk, L. Protesescu, M. I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin, and M. V. Kovalenko, J. Am. Chem. Soc. 135, 41994202 (2013).
http://dx.doi.org/10.1021/ja312604r
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4961679
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4961679
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4961679
2016-08-29
2016-12-08

Abstract

In the quest for more efficient thermoelectric material able to convert thermal to electrical energy and vice versa, composites that combine a semiconductor host having a large Seebeck coefficient with metal nanodomains that provide phonon scattering and free charge carriers are particularly appealing. Here, we present our experimental results on the thermal and electrical transport properties of PbS-metal composites produced by a versatile particle blending procedure, and where the metal work function allows injecting electrons to the intrinsic PbS host. We compare the thermoelectric performance of composites with microcrystalline or nanocrystalline structures. The electrical conductivity of the microcrystalline host can be increased several orders of magnitude with the metal inclusion, while relatively high Seebeck coefficient can be simultaneously conserved. On the other hand, in nanostructured materials, the host crystallites are not able to sustain a band bending at its interface with the metal, becoming flooded with electrons. This translates into even higher electrical conductivities than the microcrystalline material, but at the expense of lower Seebeck coefficient values.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4961679.html;jsessionid=5jM7ePX2LQwOU3p020cHFUDr.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4961679&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4961679&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4961679'
Top,Right1,Right2,Right3,