Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. M. Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, Mater. Sci. Eng., R 97, 122 (2015).
C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater. 22, 39703980 (2010).
M. Ibáñez, R. Zamani, S. Gorsse, J. Fan, S. Ortega, D. Cadavid, J. R. Morante, J. Arbiol, and A. Cabot, ACS Nano 7, 25732586 (2013).
J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem., Int. Ed. 48, 86168639 (2009).
Y. Zhang and G. D. Stucky, Chem. Mater. 26, 837848 (2013).
Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357376 (2009).
J. He, M. G. Kanatzidis, and V. P. Dravid, Mater. Today 16, 166176 (2013).
L.-D. Zhao, V. P. Dravid, and M. G. Kanatzidis, Energy Environ. Sci. 7, 251268 (2014).
M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 22252230 (2011).
S. V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).
M. Zebarjadi, B. Liao, K. Esfarjani, M. Dresselhaus, and G. Chen, Adv. Mater. 25, 15771582 (2013).
W. Shen, T. Tian, B. Liao, and M. Zebarjadi, Phys. Rev. B 90, 075301 (2014).
J. Y. Lee and R.-K. Lee, Phys. Rev. B 89, 155425 (2014).
M. Ibáñez, Z. Luo, A. Genc, L. Piveteau, S. Ortega, D. Cadavid, O. Dobrozhan, Y. Liu, M. Nachtegaal, M. Zebarjadi, J. Arbiol, M. V. Kovalenko, and A. Cabot, Nat. Commun. 7, 10766 (2016).
M. Koirala, H. Zhao, M. Pokharel, S. Chen, T. Dahal, C. Opeil, G. Chen, and Z. Ren, Appl. Phys. Lett. 102, 213111 (2013).
J. M. O. Zide, J.-H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J. P. Feser, D. Xu, S. L. Singer, Z. X. Bian, A. Majumdar, J. E. Bowers, A. Shakouri, and A. C. Gossard, J. Appl. Phys. 108, 123702 (2010).
J. P. Heremans, C. M. Thrush, and D. T. Morelli, J. Appl. Phys. 98, 063703 (2005).
E. Lee, J. Ko, J.-Y. Kim, W.-S. Seo, S.-M. Choi, K. H. Lee, W. Shim, and W. Lee, J. Mater. Chem. C 4, 13131319 (2016).
F. R. Sie, C. H. Kuo, C. S. Hwang, Y. W. Chou, C. H. Yeh, Y. L. Lin, and J. Y. Huang, J. Electron. Mater. 45, 19271934 (2016).
Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, and L. Chen, Adv. Funct. Mater. 25, 966976 (2015).
S. Sumithra, N. J. Takas, D. K. Misra, W. M. Nolting, P. F. P. Poudeu, and K. L. Stokes, Adv. Energy Mater. 1, 11411147 (2011).
Y. Zhang, M. L. Snedaker, C. S. Birkel, S. Mubeen, X. Ji, Y. Shi, D. Liu, X. Liu, M. Moskovits, and G. D. Stucky, Nano Lett. 12, 10751080 (2012).
I.-H. Kim, S.-M. Choi, W.-S. Seo, and D.-I. Cheong, Nanoscale Res. Lett. 7, 16 (2012).
K.-H. Lee, H.-S. Kim, S.-I. Kim, E.-S. Lee, S.-M. Lee, J.-S. Rhyee, J.-Y. Jung, I.-H. Kim, Y. Wang, and K. Koumoto, J. Electron. Mater. 41, 11651169 (2012).
T. Sun, M. K. Samani, N. Khosravian, K. M. Ang, Q. Yan, B. K. Tay, and H. H. Hng, Nano Energy 8, 223230 (2014).
S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, Nanotechnology 24, 285702 (2013).
M. V. Warren, J. C. Canniff, H. Chi, F. Naab, V. A. Stoica, R. Clarke, C. Uher, and R. S. Goldman, J. Appl. Phys. 117, 065101 (2015).
M. V. Warren, J. C. Canniff, H. Chi, E. Morag, F. Naab, V. A. Stoica, R. Clarke, C. Uher, and R. S. Goldman, J. Appl. Phys. 114, 043704 (2013).
H. Zhao, M. Pokharel, S. Chen, B. Liao, K. Lukas, C. Opeil, G. Chen, and Z. Ren, Nanotechnology 23, 505402 (2012).
X. Zhou, G. Wang, L. Zhang, H. Chi, X. Su, J. Sakamoto, and C. Uher, J. Mater. Chem. 22, 29582964 (2012).
X. Zhao, H. Wang, S. Wang, D. Elhadj, J. Wang, and G. Fu, RSC Adv. 4, 5714857152 (2014).
J. Zheng, J. Peng, Z. Zheng, M. Zhou, E. Thompson, J. Yang, and W. Xiao, Front. Chem. 3, 53 (2015).
N. Van Nong, N. Pryds, S. Linderoth, and M. Ohtaki, Adv. Mater. 23, 24842490 (2011).
Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Alloys Compd. 477, 817821 (2009).
M. Ito and J. Sumiyoshi, J. Jpn. Soc. Powder Powder Metall. 55, 9095 (2007).
M. Ibáñez, R. J. Korkosz, Z. Luo, P. Riba, D. Cadavid, S. Ortega, A. Cabot, and M. G. Kanatzidis, J. Am. Chem. Soc. 137, 40464049 (2015).
L.-I. Hung, C.-K. Tsung, W. Huang, and P. Yang, Adv. Mater. 22, 19101914 (2010).
K. Kravchyk, L. Protesescu, M. I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin, and M. V. Kovalenko, J. Am. Chem. Soc. 135, 41994202 (2013).

Data & Media loading...


Article metrics loading...



In the quest for more efficient thermoelectric material able to convert thermal to electrical energy and vice versa, composites that combine a semiconductor host having a large Seebeck coefficient with metal nanodomains that provide phonon scattering and free charge carriers are particularly appealing. Here, we present our experimental results on the thermal and electrical transport properties of PbS-metal composites produced by a versatile particle blending procedure, and where the metal work function allows injecting electrons to the intrinsic PbS host. We compare the thermoelectric performance of composites with microcrystalline or nanocrystalline structures. The electrical conductivity of the microcrystalline host can be increased several orders of magnitude with the metal inclusion, while relatively high Seebeck coefficient can be simultaneously conserved. On the other hand, in nanostructured materials, the host crystallites are not able to sustain a band bending at its interface with the metal, becoming flooded with electrons. This translates into even higher electrical conductivities than the microcrystalline material, but at the expense of lower Seebeck coefficient values.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd