Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/10/10.1063/1.4963661
1.
D. M. Powell, R. Fu, K. Horowitz, P. A. Basore, M. Woodhouse, and T. Buonassisi, Energy Environ. Sci. 8, 3395 (2015).
http://dx.doi.org/10.1039/C5EE01509J
2.
SunShot Vision Study, U.S. Department of Energy, 2012.
3.
S. Rühle, A. Y. Anderson, H.-N. Barad, B. Kupfer, Y. Bouhadana, E. Rosh-Hodesh, and A. Zaban, J. Phys. Chem. Lett. 3, 3755 (2012).
http://dx.doi.org/10.1021/jz3017039
4.
See http://www.nrel.gov/ncpv/images/efficiency_chart.jpg for Research Cell Efficiency Records.
5.
H. Kawazoe, M. Yasukawa, and H. Hyodo, Nature 389, 939 (1997).
http://dx.doi.org/10.1038/40087
6.
G. Trimarchi, H. Peng, J. Im, A. Freeman, V. Cloet, A. Raw, K. Poeppelmeier, K. Biswas, S. Lany, and A. Zunger, Phys. Rev. B 84, 165116 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165116
7.
A. Fujishima and K. Honda, Nature 238, 37 (1972).
http://dx.doi.org/10.1038/238037a0
8.
H. Peng and S. Lany, Phys. Rev. B 85, 201202(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.201202
9.
H. Peng, A. Zakutayev, S. Lany, T. R. Paudel, M. D’Avezac, P. F. Ndione, J. D. Perkins, D. S. Ginley, A. R. Nagaraja, N. H. Perry, T. O. Mason, and A. Zunger, Adv. Funct. Mater. 23, 5267 (2013).
http://dx.doi.org/10.1002/adfm.201300807
10.
H. Peng, P. F. Ndione, D. S. Ginley, A. Zakutayev, and S. Lany, Phys. Rev. X 5, 021016 (2015).
http://dx.doi.org/10.1103/physrevx.5.021016
11.
S. Lany, J. Phys.: Condens. Matter 27, 283203 (2015).
http://dx.doi.org/10.1088/0953-8984/27/28/283203
12.
A. Zakutayev, C. M. Caskey, A. N. Fioretti, D. S. Ginley, J. Vidal, V. Stevanovic, E. Tea, and S. Lany, J. Phys. Chem. Lett. 5, 1117 (2014).
http://dx.doi.org/10.1021/jz5001787
13.
G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, and X. Gonze, Nat. Commun. 4, 2292 (2013).
http://dx.doi.org/10.1038/ncomms3292
14.
T. Minami, Y. Nishi, and T. Miyata, Appl. Phys. Express 8, 022301 (2015).
http://dx.doi.org/10.7567/APEX.8.022301
15.
B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, Th. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, and C. Ronning, Phys. Status Solidi B 249, 1487 (2012).
http://dx.doi.org/10.1002/pssb.201248128
16.
I. Lefebvre, M. A. Szymanski, J. Olivier-Fourcade, and J. C. Jumas, Phys. Rev. B 58, 1896 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.1896
17.
G. W. Watson, J. Chem. Phys. 114, 758 (2001).
http://dx.doi.org/10.1063/1.1331102
18.
A. Walsh, D. J. Payne, R. G. Egdell, and G. W. Watson, Chem. Soc. Rev. 40, 4455 (2011).
http://dx.doi.org/10.1039/c1cs15098g
19.
Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 032113 (2008).
http://dx.doi.org/10.1063/1.2964197
20.
See http://materials.nrel.gov for the results of GW quasi-particle energy calculations for SnO.
21.
J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Lett. 14, 2584 (2014).
http://dx.doi.org/10.1021/nl500390f
22.
R. E. Brandt, V. Stevanović, D. S. Ginley, and T. Buonassisi, MRS Commun. 5, 265 (2015).
http://dx.doi.org/10.1557/mrc.2015.26
23.
T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. A 1, 5628 (2013).
http://dx.doi.org/10.1039/c3ta10518k
24.
B. Philippe, B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E. M. J. Johansson, and H. Rensmo, Chem. Mater. 27, 1720 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00348
25.
N. F. Quackenbush, J. P. Allen, D. O. Scanlon, S. Sallis, J. A. Hewlett, A. S. Nandur, B. Chen, K. E. Smith, C. Weiland, D. A. Fischer, J. C. Woicik, B. E. White, G. W. Watson, and L. F. J. Piper, Chem. Mater. 25, 3114 (2013).
http://dx.doi.org/10.1021/cm401343a
26.
K. Govaerts, R. Saniz, B. Partoens, and D. Lamoen, Phys. Rev. B 87, 235210 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.235210
27.
J. Wang, N. Umezawa, and H. Hosono, Adv. Energy Mater. 6, 1501190 (2016).
http://dx.doi.org/10.1002/aenm.201501190
28.
S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (Wiley, 2009).
29.
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).
http://dx.doi.org/10.1126/science.1061051
30.
J. B. Varley, A. Janotti, and C. G. Van de Walle, Adv. Mater. 23, 2343 (2011).
http://dx.doi.org/10.1002/adma.201003603
31.
S. Lany and A. Zunger, Phys. Rev. B 81, 205209 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205209
32.
A. Zakutayev, V. Stevanovic, and S. Lany, Appl. Phys. Lett. 106, 123903 (2015).
http://dx.doi.org/10.1063/1.4914974
33.
R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).
http://dx.doi.org/10.1107/S0567739476001551
34.
F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
35.
Y. Zhang, A. Mascarenhas, and L.-W. Wang, Phys. Rev. Lett. 101, 036403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.036403
36.
V. Popescu and A. Zunger, Phys. Rev. Lett. 104, 236403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.236403
37.
L. C. Davis, Phys. Rev. B 28, 6961 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.6961
38.
G. Ottaviani, L. Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta, Phys. Rev. B 12, 3318 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.3318
39.
L. Yu and A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.068701
40.
W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
41.
H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films 517, 2455 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.002
42.
H. Windischmann, Crit. Rev. Solid State Mater. Sci. 17, 547 (1992).
http://dx.doi.org/10.1080/10408439208244586
43.
A. Zunger, S. Wei, L. Ferreira, and J. Bernard, Phys. Rev. Lett. 65, 353 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.353
44.
S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.9622
45.
A. Van de Walle, P. Tiwary, M. de Jong, D. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu, Calphad 42, 13 (2013).
http://dx.doi.org/10.1016/j.calphad.2013.06.006
46.
P. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
47.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
48.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
49.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
50.
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
51.
J. P. Allen, D. O. Scanlon, S. C. Parker, and G. W. Watson, J. Phys. Chem. C 115, 19916 (2011).
http://dx.doi.org/10.1021/jp205148y
52.
A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).
http://dx.doi.org/10.1063/1.2213970
53.
D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 85, 155109 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155109
54.
M. Gajdos, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).
http://dx.doi.org/10.1103/physrevb.73.045112
55.
P. V. C. Medeiros, S. Stafström, and J. Björk, Phys. Rev. B 89, 041407 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.041407
56.
C. M. Caskey, R. M. Richards, D. S. Ginley, and A. Zakutayev, Mater. Horiz. 1, 424 (2014).
http://dx.doi.org/10.1039/c4mh00049h
57.
A. Zakutayev, J. D. Perkins, P. A. Parilla, N. E. Widjonarko, A. K. Sigdel, J. J. Berry, and D. S. Ginley, MRS Commun. 1, 23 (2011).
http://dx.doi.org/10.1557/mrc.2011.9
58.
A. W. Welch, P. P. Zawadzki, S. Lany, C. A. Wolden, and A. Zakutayev, Sol. Energy Mater. Sol. Cells 132, 499 (2015).
http://dx.doi.org/10.1016/j.solmat.2014.09.041
59.
L. L. Baranowski, P. Zawadzki, S. Christensen, D. Nordlund, S. Lany, A. C. Tamboli, L. Gedvilas, D. S. Ginley, W. Tumas, E. S. Toberer, and A. Zakutayev, Chem. Mater. 26, 4951 (2014).
http://dx.doi.org/10.1021/cm501339v
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/10/10.1063/1.4963661
Loading
/content/aip/journal/aplmater/4/10/10.1063/1.4963661
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/10/10.1063/1.4963661
2016-10-04
2016-12-09

Abstract

All-oxide photovoltaics could open rapidly scalable manufacturing routes, if only oxide materials with suitable electronic and optical properties were developed. SnO has exceptional doping and transport properties among oxides, but suffers from a strongly indirect band gap. Here, we address this shortcoming by band-structure engineering through isovalent but heterostructural alloying with divalent cations (Mg, Ca, Sr, and Zn). Using first-principles calculations, we show that suitable band gaps and optical properties close to that of direct semiconductors are achievable, while the comparatively small effective masses are preserved in the alloys. Initial thin film synthesis and characterization support the feasibility of the approach.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/10/1.4963661.html;jsessionid=tDWq2CXjqB1kPUmkcgTD2hXK.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/10/10.1063/1.4963661&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/10/10.1063/1.4963661&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/10/10.1063/1.4963661'
Top,Right1,Right2,Right3,