Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/2/10.1063/1.4940901
1.
1.F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
http://dx.doi.org/10.1103/PhysRevLett.3.34
2.
2.N. F. Mott, Metal-Insulator Transition (Taylor and Francis Press, 1990), p. 186.
3.
3.T. M. Rice, H. Launois, and J. P. Pouget, Phys. Rev. Lett. 73, 3042 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3042
4.
4.Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100347
5.
5.H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, and Y. S. Lim, New J. Phys. 6, 52 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/052
6.
6.H. T. Kim, Y. W. Lee, B.-J. Kim, B.-G. Chae, S. J. Yun, K.-Y. Kang, K.-J. Han, K.-J. Yee, and Y.-S. Lim, Phys. Rev. Lett. 97, 266401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.266401
7.
7.M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Science 318, 1750 (2007).
http://dx.doi.org/10.1126/science. 1150124
8.
8.Z. Tao, T. R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C. Y. Ruan, K. Wang, and J. Wu, Phys. Rev. Lett. 109, 166406 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.166406
9.
9.J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, Phys. Rev. Lett. 113, 216402 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.216402
10.
10.R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.3389
11.
11.A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, Phys. Rev. B 70, 161102(R) (2004).
http://dx.doi.org/10.1103/PhysRevB.70.161102
12.
12.M. Liu, A. J. Sternbach, M. Wagner, T. V. Slusar, T. Kong, S. L. Bud’ko, S. Kittiwatanakul, M. M. Qazilbash, A. McLeod, Z. Fei, E. Abreu, J. Zhang, M. Goldflam, S. Dai, G.-X. Ni, J. Lu, H. A. Bechtel, M. C. Martin, M. B. Raschke, R. D. Averitt, S. A. Wolf, H.-T. Kim, P. C. Canfield, and D. N. Basov, Phys. Rev. B 91, 245155 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.245155
13.
13.J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, Nature 500, 431 (2013).
http://dx.doi.org/10. 1038/nature12425
14.
14.S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, Opt. Quantum Electron. 35, 1351 (2003).
http://dx.doi.org/10.1023/B:OQEL.0000009429.14136.3d
15.
15.Z. Yang and S. Ramanathan, IEEE Photonics J. 7 (2015).
http://dx.doi.org/10.1109/jphot.2015.2413594
16.
16.R. T. Rajendra Kumar, B. Karunagaran, D. Mangalaraj, S. K. Narayandass, P. Manoravi, M. Joseph, and V. Gopal, Smart Mater. Struct. 12, 188 (2003).
http://dx.doi.org/10.1088/0964-1726/12/2/305
17.
17.L. Pellegrino, N. Manca, T. Kanki, H. Tanaka, M. Biasotti, E. Bellingeri, A. S. Siri, and D. Marré, Adv. Mater. 24, 2929 (2012).
http://dx.doi.org/10.1002/adma.201104669
18.
18.S.-H. Bae, S. Lee, H. Koo, L. Lin, B. H. Jo, C. Park, and Z. L. Wang, Adv. Mater. 25, 5098 (2013).
http://dx.doi.org/10.1002/adma.201302511
19.
19.T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Science 325, 1518 (2009).
http://dx.doi.org/10.1126/science.1176580
20.
20.M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov, Appl. Phys. Lett. 99, 044103 (2011).
http://dx.doi.org/10.1063/1.3615804
21.
21.M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, Appl. Phys. Lett. 105, 041117 (2014).
http://dx.doi.org/10.1063/1.4891765
22.
22.J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, Sci. Rep. 3, 3029 (2013).
http://dx.doi.org/10.1038/srep03029
23.
23.K. N. Tu, J. F. Ziegler, and C. J. Kircher, Appl. Phys. Lett. 23, 493 (1973).
http://dx.doi.org/10.1063/1.1654972
24.
24.N. Yuan, J. Li, G. Li, and X. Chen, Thin Solid Films 515, 1275 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.03.015
25.
25.B.-G. Chae, H.-T. Kim, S.-J. Yun, B.-J. Kim, Y.-W. Lee, and K.-Y. Kang, Jpn. J. Appl. Phys., Part 1 46, 738 (2007).
http://dx.doi.org/10.1143/JJAP.46.738
26.
26.A. Gupta, R. Aggarwal, P. Gupta, T. Dutta, R. J. Narayan, and J. Narayan, Appl. Phys. Lett. 95, 111915 (2009).
http://dx.doi.org/10.1063/1.3232241
27.
27.Z. Yang, C. Ko, and S. Ramanathan, J. Appl. Phys. 108, 073708 (2010).
http://dx.doi.org/10.1063/1.3492716
28.
28.K. Tonischa, V. Cimallaa, Ch. Foerstera, H. Romanusa, O. Ambachera, and D. Dontsov, Sens. Actuators A 132, 658 (2006).
http://dx.doi.org/10.1016/j.sna.2006.03.001
29.
29.T. Aubert, O. Elmazria, B. Assouar, L. Bouvot, and M. Oudich, Appl. Phys. Lett. 96, 203503 (2010).
http://dx.doi.org/10.1063/1.3430042
30.
30.T. Aubert, M. B. Assouar, O. Legrani, O. Elmazria, C. Tiusan, and S. Robert, J. Vac. Sci. Technol., A 29, 021010 (2011).
http://dx.doi.org/10.1116/1.3551604
31.
31.J. Bian, L. Miao, S. Zhao, X. Li, C. Zou, D. Zhang, and Y. Zhang, J. Mater. Sci. 50, 5709 (2015), also at http://link.springer.com/article/10.1007%2Fs10853-015-9112-z.
http://dx.doi.org/10.1007/s10853-015-9112-z
32.
32.K. S. Stevens, A. Ohtani, M. Kinniburgh, and R. Beresford, Appl. Phys. Lett. 65, 321 (1994).
http://dx.doi.org/10.1063/1.112359
33.
33.R. D. Vispute, J. Narayan, H. Wu, and K. Jagannadham, J. Appl. Phys. 77, 4724 (1995).
http://dx.doi.org/10.1063/1.359441
34.
34.G. W. Auner, F. Jin, V. M. Naik, and R. Naik, J. Appl. Phys. 85, 7879 (1999).
http://dx.doi.org/10.1063/1.370600
35.
35.W. Wang, W. Yang, Z. Liu, H. Wang, L. Wen, and G. Li, Sci. Rep. 5, 11480 (2015).
http://dx.doi.org/10.1038/srep11480
36.
36.D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. El Khakani, Appl. Phys. Lett. 87, 051910 (2005).
http://dx.doi.org/10.1063/1.2001139
37.
37.J. Narayan and V. M. Bhosle, J. Appl. Phys. 100, 103524 (2006).
http://dx.doi.org/10.1063/1.2384798
38.
38.J. Mendialdua, R. Casanova, and Y. Barbaux, J. Electron Spectrosc. Relat. Phenom. 71, 249 (1995).
http://dx.doi.org/10.1016/0368-2048(94)02291-7
39.
39.G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. De Gryse, J. Electron Spectrosc. Relat. Phenom. 135, 167 (2004).
http://dx.doi.org/10.1016/j.elspec.2004.03.004
40.
40.H. L. M. Chang, H. You, J. Guo, and D. J. Lam, Appl. Surf. Sci. 48-49, 12 (1991).
http://dx.doi.org/10.1016/0169-4332(91)90301-Y
41.
41.J. K. Burdett, Acta Crystallogr., Sect. B 51, 547 (1995).
http://dx.doi.org/10.1107/S010876819401373X
42.
42.L. L. Fan, Y. F. Wu, C. Si, G. Q. Pan, C. W. Zou, and Z. Y. Wu, Appl. Phys. Lett. 102, 011604 (2013).
http://dx.doi.org/10.1063/1.4775580
43.
43. From Fig. 2(b), for the VO2 (011) and VO2 (220) planes measured at 2θ = 27.8° and 2θ = 55.6°, respectively, the inter-planar distances d011 and d220 were determined from the Brag’s law. Then, lattice parameters of VO2 were calculated using equation of the crystallographic planes spacing dhkl for monoclinic structure, where for dhkl, values of d220 and d011 were used for cVO2 and aVO2, respectively, at β = 122.6°. Analogously, from Fig. 2(b), for the AlN (101) plane at 2θ = 37.89°, the inter-planar spacing d101 was determined. Further, lattice parameter bAlN (bAlN = aAlN) was calculated using equation of the crystallographic planes spacing dhkl for hexagonal structure (at γ = 120.0°), .
44.
44.J. M. Longo and P. Kierkegaard, Acta Chem. Scand. 24, 420 (1970).
http://dx.doi.org/10.3891/acta.chem.scand.24-0420
45.
45.J. P. Pouget, H. Launois, J. P. D’Haenens, P. Merenda, and T. M. Rice, Phys. Rev. Lett. 35, 873 (1975).
http://dx.doi.org/10.1103/PhysRevLett.35.873
46.
46.Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. 80, 583 (2002).
http://dx.doi.org/10.1063/1.1446215
47.
47.T. Yao, X. Zhang, Z. Sun, S. Liu, Y. Huang, Y. Xie, C. Wu, X. Yuan, W. Zhang, Z. Wu, G. Pan, F. Hu, L. Wu, Q. Liu, and S. Wei, Phys. Rev. Lett. 105, 226405 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.226405
48.
48.B.-J. Kim, Y. W. Lee, S. Choi, J.-W. Lim, S. J. Yun, and H.-T. Kim, Phys. Rev. B 77, 235401 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235401
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/2/10.1063/1.4940901
Loading
/content/aip/journal/aplmater/4/2/10.1063/1.4940901
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/2/10.1063/1.4940901
2016-02-01
2016-12-04

Abstract

We report the epitaxialgrowth and the mechanism of a higher temperature insulator-to-metal-transition (IMT) of vanadium dioxide (VO) thin films synthesized on aluminum nitride (AlN)/Si (111) substrates by a pulsed-laser-deposition method; the IMT temperature is ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO and AlN is VO (010) ‖ AlN (0001) with VO [101] zone axes, which results in a substrate-induced tensile strain along the in-plane and axes of the insulating monoclinic VO. This strain stabilizes the insulating phase of VO and raises for 10 K higher than ≈ 340 K in a bulk VOsingle crystal. Near , a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/2/1.4940901.html;jsessionid=ijSfshFp41XIRhdWVnCXzXFh.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/2/10.1063/1.4940901&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/2/10.1063/1.4940901&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/2/10.1063/1.4940901'
Top,Right1,Right2,Right3,