Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
2.N. F. Mott, Metal-Insulator Transition (Taylor and Francis Press, 1990), p. 186.
3.T. M. Rice, H. Launois, and J. P. Pouget, Phys. Rev. Lett. 73, 3042 (1994).
4.Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).
5.H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, and Y. S. Lim, New J. Phys. 6, 52 (2004).
6.H. T. Kim, Y. W. Lee, B.-J. Kim, B.-G. Chae, S. J. Yun, K.-Y. Kang, K.-J. Han, K.-J. Yee, and Y.-S. Lim, Phys. Rev. Lett. 97, 266401 (2006).
7.M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Science 318, 1750 (2007). 1150124
8.Z. Tao, T. R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C. Y. Ruan, K. Wang, and J. Wu, Phys. Rev. Lett. 109, 166406 (2012).
9.J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, Phys. Rev. Lett. 113, 216402 (2014).
10.R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
11.A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, Phys. Rev. B 70, 161102(R) (2004).
12.M. Liu, A. J. Sternbach, M. Wagner, T. V. Slusar, T. Kong, S. L. Bud’ko, S. Kittiwatanakul, M. M. Qazilbash, A. McLeod, Z. Fei, E. Abreu, J. Zhang, M. Goldflam, S. Dai, G.-X. Ni, J. Lu, H. A. Bechtel, M. C. Martin, M. B. Raschke, R. D. Averitt, S. A. Wolf, H.-T. Kim, P. C. Canfield, and D. N. Basov, Phys. Rev. B 91, 245155 (2015).
13.J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, and D. H. Cobden, Nature 500, 431 (2013). 1038/nature12425
14.S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen, and C. Ke, Opt. Quantum Electron. 35, 1351 (2003).
15.Z. Yang and S. Ramanathan, IEEE Photonics J. 7 (2015).
16.R. T. Rajendra Kumar, B. Karunagaran, D. Mangalaraj, S. K. Narayandass, P. Manoravi, M. Joseph, and V. Gopal, Smart Mater. Struct. 12, 188 (2003).
17.L. Pellegrino, N. Manca, T. Kanki, H. Tanaka, M. Biasotti, E. Bellingeri, A. S. Siri, and D. Marré, Adv. Mater. 24, 2929 (2012).
18.S.-H. Bae, S. Lee, H. Koo, L. Lin, B. H. Jo, C. Park, and Z. L. Wang, Adv. Mater. 25, 5098 (2013).
19.T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Science 325, 1518 (2009).
20.M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. Di Ventra, and D. N. Basov, Appl. Phys. Lett. 99, 044103 (2011).
21.M. D. Goldflam, M. K. Liu, B. C. Chapler, H. T. Stinson, A. J. Sternbach, A. S. McLeod, J. D. Zhang, K. Geng, M. Royal, B.-J. Kim, R. D. Averitt, N. M. Jokerst, D. R. Smith, H.-T. Kim, and D. N. Basov, Appl. Phys. Lett. 105, 041117 (2014).
22.J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, Sci. Rep. 3, 3029 (2013).
23.K. N. Tu, J. F. Ziegler, and C. J. Kircher, Appl. Phys. Lett. 23, 493 (1973).
24.N. Yuan, J. Li, G. Li, and X. Chen, Thin Solid Films 515, 1275 (2006).
25.B.-G. Chae, H.-T. Kim, S.-J. Yun, B.-J. Kim, Y.-W. Lee, and K.-Y. Kang, Jpn. J. Appl. Phys., Part 1 46, 738 (2007).
26.A. Gupta, R. Aggarwal, P. Gupta, T. Dutta, R. J. Narayan, and J. Narayan, Appl. Phys. Lett. 95, 111915 (2009).
27.Z. Yang, C. Ko, and S. Ramanathan, J. Appl. Phys. 108, 073708 (2010).
28.K. Tonischa, V. Cimallaa, Ch. Foerstera, H. Romanusa, O. Ambachera, and D. Dontsov, Sens. Actuators A 132, 658 (2006).
29.T. Aubert, O. Elmazria, B. Assouar, L. Bouvot, and M. Oudich, Appl. Phys. Lett. 96, 203503 (2010).
30.T. Aubert, M. B. Assouar, O. Legrani, O. Elmazria, C. Tiusan, and S. Robert, J. Vac. Sci. Technol., A 29, 021010 (2011).
31.J. Bian, L. Miao, S. Zhao, X. Li, C. Zou, D. Zhang, and Y. Zhang, J. Mater. Sci. 50, 5709 (2015), also at
32.K. S. Stevens, A. Ohtani, M. Kinniburgh, and R. Beresford, Appl. Phys. Lett. 65, 321 (1994).
33.R. D. Vispute, J. Narayan, H. Wu, and K. Jagannadham, J. Appl. Phys. 77, 4724 (1995).
34.G. W. Auner, F. Jin, V. M. Naik, and R. Naik, J. Appl. Phys. 85, 7879 (1999).
35.W. Wang, W. Yang, Z. Liu, H. Wang, L. Wen, and G. Li, Sci. Rep. 5, 11480 (2015).
36.D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. El Khakani, Appl. Phys. Lett. 87, 051910 (2005).
37.J. Narayan and V. M. Bhosle, J. Appl. Phys. 100, 103524 (2006).
38.J. Mendialdua, R. Casanova, and Y. Barbaux, J. Electron Spectrosc. Relat. Phenom. 71, 249 (1995).
39.G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. De Gryse, J. Electron Spectrosc. Relat. Phenom. 135, 167 (2004).
40.H. L. M. Chang, H. You, J. Guo, and D. J. Lam, Appl. Surf. Sci. 48-49, 12 (1991).
41.J. K. Burdett, Acta Crystallogr., Sect. B 51, 547 (1995).
42.L. L. Fan, Y. F. Wu, C. Si, G. Q. Pan, C. W. Zou, and Z. Y. Wu, Appl. Phys. Lett. 102, 011604 (2013).
43. From Fig. 2(b), for the VO2 (011) and VO2 (220) planes measured at 2θ = 27.8° and 2θ = 55.6°, respectively, the inter-planar distances d011 and d220 were determined from the Brag’s law. Then, lattice parameters of VO2 were calculated using equation of the crystallographic planes spacing dhkl for monoclinic structure, where for dhkl, values of d220 and d011 were used for cVO2 and aVO2, respectively, at β = 122.6°. Analogously, from Fig. 2(b), for the AlN (101) plane at 2θ = 37.89°, the inter-planar spacing d101 was determined. Further, lattice parameter bAlN (bAlN = aAlN) was calculated using equation of the crystallographic planes spacing dhkl for hexagonal structure (at γ = 120.0°), .
44.J. M. Longo and P. Kierkegaard, Acta Chem. Scand. 24, 420 (1970).
45.J. P. Pouget, H. Launois, J. P. D’Haenens, P. Merenda, and T. M. Rice, Phys. Rev. Lett. 35, 873 (1975).
46.Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. 80, 583 (2002).
47.T. Yao, X. Zhang, Z. Sun, S. Liu, Y. Huang, Y. Xie, C. Wu, X. Yuan, W. Zhang, Z. Wu, G. Pan, F. Hu, L. Wu, Q. Liu, and S. Wei, Phys. Rev. Lett. 105, 226405 (2010).
48.B.-J. Kim, Y. W. Lee, S. Choi, J.-W. Lim, S. J. Yun, and H.-T. Kim, Phys. Rev. B 77, 235401 (2008).

Data & Media loading...


Article metrics loading...



We report the epitaxialgrowth and the mechanism of a higher temperature insulator-to-metal-transition (IMT) of vanadium dioxide (VO) thin films synthesized on aluminum nitride (AlN)/Si (111) substrates by a pulsed-laser-deposition method; the IMT temperature is ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO and AlN is VO (010) ‖ AlN (0001) with VO [101] zone axes, which results in a substrate-induced tensile strain along the in-plane and axes of the insulating monoclinic VO. This strain stabilizes the insulating phase of VO and raises for 10 K higher than ≈ 340 K in a bulk VOsingle crystal. Near , a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd