Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/2/10.1063/1.4940960
1.
1.K. A. Gschneidner, Jr., V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005), and references therein.
http://dx.doi.org/10.1088/0034-4885/68/6/R04
2.
2.S. M. Benford and G. V. Brown, J. Appl. Phys. 52, 2110 (1981).
http://dx.doi.org/10.1063/1.329633
3.
3.A. M. Tishin, in Handbook of Magnetic Materials, edited by K. H. Buschow (Elsevier, 1999), Vol. 12, p. 395.
4.
4.B. F. Yu, Q. Gao, X. Z. Meng, and Z. Chen, Int. J. Refrig. 26, 622 (2003).
http://dx.doi.org/10.1016/S0140-7007(03)00048-3
5.
5.V. Provenzano, J. Li, T. King, E. Canavan, P. Shirron, M. DiPirro, and R. D. Shull, J. Magn. Magn. Mater. 266, 185 (2003).
http://dx.doi.org/10.1016/S0304-8853(03)00470-0
6.
6.G. Khaliullin and S. Okamoto, Phys. Rev. Lett. 89, 167201 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.167201
7.
7.C. Ulrich, G. Khaliullin, S. Okamoto, M. Reehuis, A. Ivanov, H. He, Y. Taguchi, Y. Tokura, and B. Keimer, Phys. Rev. Lett. 89, 167202 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.167202
8.
8.Z. Y. Zhao, O. Khosravani, M. Lee, L. Balicas, X. F. Sun, J. G. Cheng, J. Brooks, H. D. Zhou, and E. S. Choi, Phys. Rev. B 91, 161106(R) (2015).
http://dx.doi.org/10.1103/PhysRevB.91.161106
9.
9.J. Hemberger, H.-A. Krug von Nidda, V. Fritsch, J. Deisenhofer, S. Lobina, T. Rudolf, P. Lunkenheimer, F. Lichtenberg, A. Loidl, D. Bruns, and B. Büchner, Phys. Rev. Lett. 91, 066403 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.066403
10.
10.T. Katsufuji and H. Takagi, Phys. Rev. B 64, 054415 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.054415
11.
11.J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J.-W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schifer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, Nature 466, 954 (2010).
http://dx.doi.org/10.1038/nature09331
12.
12.Y. Kususe, H. Murakami, K. Fujita, I. Kakeya, M. Suzuki, S. Murai, and K. Tanaka, Jpn. J. Appl. Phys. 53, 05FJ07 (2014).
http://dx.doi.org/10.7567/JJAP.53.05FJ07
13.
13.L. Li, H. Zhou, J. Yan, D. Mandrus, and V. Keppens, APL Mater. 2, 110701 (2014).
http://dx.doi.org/10.1063/1.4902137
14.
14.L. Li, J. R. Morris, M. R. Koehler, Z. Dun, H. Zhou, J. Yan, D. Mandrus, and V. Keppens, Phys. Rev. B 92, 024109 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.024109
15.
15.K. Rubi, P. Kumar, D. V. M. Repaka, R. Chen, J.-S. Wang, and R. Mahendiran, Appl. Phys. Lett. 104, 032407 (2014).
http://dx.doi.org/10.1063/1.4862981
16.
16.Z.-J. Mo, Z.-H. Hao, J. Shen, L. Li, J.-F. Wu, F.-X. Hu, J.-R. Sun, and B.-G. Shen, J. Alloys Compd. 649, 674 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.07.176
17.
17.Y. Su, Y. Sui, J.-G. Cheng, J.-S. Zhou, X. Wang, Y. Wang, and J. B. Goodenough, Phys. Rev. B 87, 195102 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.195102
18.
18.K. Ahn, V. K. Pecharsky, and K. A. Gschneidner, Jr., J. Appl. Phys. 106, 043918 (2009).
http://dx.doi.org/10.1063/1.3204662
19.
19.K. Ahn, A. O. Pecharsky, K. A. Gschneidner, Jr., and V. K. Pecharsky, J. Appl. Phys. 97, 063901 (2004).
http://dx.doi.org/10.1063/1.1841463
20.
20.A. Midya, N. Khan, D. Bhoi, and P. Mandal, Appl. Phys. Lett. 101, 132415 (2012).
http://dx.doi.org/10.1063/1.4754849
21.
21.D. X. Li, T. Yamamura, S. Nimori, Y. Homma, F. Honda, and D. Aoki, Appl. Phys. Lett. 102, 152409 (2013).
http://dx.doi.org/10.1063/1.4802260
22.
22.A. Midya, P. Mandal, S. N. Das, S. Banerjee, L. S. Sharath Chandra, V. Ganesan, and S. Roy Barman, Appl. Phys. Lett. 96, 142514 (2010).
http://dx.doi.org/10.1063/1.3386541
23.
23.A. Midya, S. N. Das, P. Mandal, S. Pandya, and V. Ganesan, Phys. Rev. B 84, 235127 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235127
24.
24.M. J. Shao, S. X. Cao, S. J. Yuan, J. Shang, B. J. Kang, B. Lu, and J. C. Zhang, Appl. Phys. Lett. 100, 222404 (2012).
http://dx.doi.org/10.1063/1.4722930
25.
25.L. H. Yin, J. Yang, R. R. Zhang, J. M. Dai, W. H. Song, and Y. P. Sun, Appl. Phys. Lett. 104, 032904 (2014).
http://dx.doi.org/10.1063/1.4862665
26.
26.M. Balli, S. Jandl, P. Fournier, and M. M. Gospodinov, Appl. Phys. Lett. 104, 232402 (2014).
http://dx.doi.org/10.1063/1.4880818
27.
27.M. Annaorazov, in Double Exchange in Heusler Alloys and Related Materials, edited byK. Bärner (Research Signpost, Trivandrum, Kerala, India, 2007), p. 117.
28.
28.J. Liebe, E. Karuas, L. Haupt, P. Mandal, and K. Bärner, Appl. Phys. Lett. 68, 2343 (1996).
http://dx.doi.org/10.1063/1.115852
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/2/10.1063/1.4940960
Loading
/content/aip/journal/aplmater/4/2/10.1063/1.4940960
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/2/10.1063/1.4940960
2016-02-01
2016-09-25

Abstract

The magnetocaloric effect in ferromagneticsingle crystal EuTiNbO has been investigated using magnetization and heat capacitymeasurements. EuTiNbO undergoes a continuous ferromagnetic phase transition at = 9.5 K due to the long range ordering of magnetic moments of Eu2+ (47). With the application of magnetic field, the spin entropy is strongly suppressed and a giant magnetic entropy change is observed near . The values of entropy change Δ and adiabatic temperature change Δ are as high as 51.3 J kg−1 K−1 and 22 K, respectively, for a field change of 0–9 T. The corresponding magnetic heating/cooling capacity is 700 J kg−1. This compound also shows large magnetocaloric effect even at low magnetic fields. In particular, the values of Δ reach 14.7 and 23.8 J kg−1 K−1 for field changes of 0–1 T and 0–2 T, respectively. The low-field giant magnetocaloric effect, together with the absence of thermal and field hysteresis makes EuTiNbO a very promising candidate for low temperature magnetic refrigeration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/2/1.4940960.html;jsessionid=Kawu3KUTPMg3sD6-gy9HKDAU.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/2/10.1063/1.4940960&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/2/10.1063/1.4940960&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/2/10.1063/1.4940960'
Top,Right1,Right2,Right3,