Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. A. Gschneidner, Jr., V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005), and references therein.
2.S. M. Benford and G. V. Brown, J. Appl. Phys. 52, 2110 (1981).
3.A. M. Tishin, in Handbook of Magnetic Materials, edited by K. H. Buschow (Elsevier, 1999), Vol. 12, p. 395.
4.B. F. Yu, Q. Gao, X. Z. Meng, and Z. Chen, Int. J. Refrig. 26, 622 (2003).
5.V. Provenzano, J. Li, T. King, E. Canavan, P. Shirron, M. DiPirro, and R. D. Shull, J. Magn. Magn. Mater. 266, 185 (2003).
6.G. Khaliullin and S. Okamoto, Phys. Rev. Lett. 89, 167201 (2002).
7.C. Ulrich, G. Khaliullin, S. Okamoto, M. Reehuis, A. Ivanov, H. He, Y. Taguchi, Y. Tokura, and B. Keimer, Phys. Rev. Lett. 89, 167202 (2002).
8.Z. Y. Zhao, O. Khosravani, M. Lee, L. Balicas, X. F. Sun, J. G. Cheng, J. Brooks, H. D. Zhou, and E. S. Choi, Phys. Rev. B 91, 161106(R) (2015).
9.J. Hemberger, H.-A. Krug von Nidda, V. Fritsch, J. Deisenhofer, S. Lobina, T. Rudolf, P. Lunkenheimer, F. Lichtenberg, A. Loidl, D. Bruns, and B. Büchner, Phys. Rev. Lett. 91, 066403 (2003).
10.T. Katsufuji and H. Takagi, Phys. Rev. B 64, 054415 (2001).
11.J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J.-W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schifer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, Nature 466, 954 (2010).
12.Y. Kususe, H. Murakami, K. Fujita, I. Kakeya, M. Suzuki, S. Murai, and K. Tanaka, Jpn. J. Appl. Phys. 53, 05FJ07 (2014).
13.L. Li, H. Zhou, J. Yan, D. Mandrus, and V. Keppens, APL Mater. 2, 110701 (2014).
14.L. Li, J. R. Morris, M. R. Koehler, Z. Dun, H. Zhou, J. Yan, D. Mandrus, and V. Keppens, Phys. Rev. B 92, 024109 (2015).
15.K. Rubi, P. Kumar, D. V. M. Repaka, R. Chen, J.-S. Wang, and R. Mahendiran, Appl. Phys. Lett. 104, 032407 (2014).
16.Z.-J. Mo, Z.-H. Hao, J. Shen, L. Li, J.-F. Wu, F.-X. Hu, J.-R. Sun, and B.-G. Shen, J. Alloys Compd. 649, 674 (2015).
17.Y. Su, Y. Sui, J.-G. Cheng, J.-S. Zhou, X. Wang, Y. Wang, and J. B. Goodenough, Phys. Rev. B 87, 195102 (2013).
18.K. Ahn, V. K. Pecharsky, and K. A. Gschneidner, Jr., J. Appl. Phys. 106, 043918 (2009).
19.K. Ahn, A. O. Pecharsky, K. A. Gschneidner, Jr., and V. K. Pecharsky, J. Appl. Phys. 97, 063901 (2004).
20.A. Midya, N. Khan, D. Bhoi, and P. Mandal, Appl. Phys. Lett. 101, 132415 (2012).
21.D. X. Li, T. Yamamura, S. Nimori, Y. Homma, F. Honda, and D. Aoki, Appl. Phys. Lett. 102, 152409 (2013).
22.A. Midya, P. Mandal, S. N. Das, S. Banerjee, L. S. Sharath Chandra, V. Ganesan, and S. Roy Barman, Appl. Phys. Lett. 96, 142514 (2010).
23.A. Midya, S. N. Das, P. Mandal, S. Pandya, and V. Ganesan, Phys. Rev. B 84, 235127 (2011).
24.M. J. Shao, S. X. Cao, S. J. Yuan, J. Shang, B. J. Kang, B. Lu, and J. C. Zhang, Appl. Phys. Lett. 100, 222404 (2012).
25.L. H. Yin, J. Yang, R. R. Zhang, J. M. Dai, W. H. Song, and Y. P. Sun, Appl. Phys. Lett. 104, 032904 (2014).
26.M. Balli, S. Jandl, P. Fournier, and M. M. Gospodinov, Appl. Phys. Lett. 104, 232402 (2014).
27.M. Annaorazov, in Double Exchange in Heusler Alloys and Related Materials, edited byK. Bärner (Research Signpost, Trivandrum, Kerala, India, 2007), p. 117.
28.J. Liebe, E. Karuas, L. Haupt, P. Mandal, and K. Bärner, Appl. Phys. Lett. 68, 2343 (1996).

Data & Media loading...


Article metrics loading...



The magnetocaloric effect in ferromagneticsingle crystal EuTiNbO has been investigated using magnetization and heat capacitymeasurements. EuTiNbO undergoes a continuous ferromagnetic phase transition at = 9.5 K due to the long range ordering of magnetic moments of Eu2+ (47). With the application of magnetic field, the spin entropy is strongly suppressed and a giant magnetic entropy change is observed near . The values of entropy change Δ and adiabatic temperature change Δ are as high as 51.3 J kg−1 K−1 and 22 K, respectively, for a field change of 0–9 T. The corresponding magnetic heating/cooling capacity is 700 J kg−1. This compound also shows large magnetocaloric effect even at low magnetic fields. In particular, the values of Δ reach 14.7 and 23.8 J kg−1 K−1 for field changes of 0–1 T and 0–2 T, respectively. The low-field giant magnetocaloric effect, together with the absence of thermal and field hysteresis makes EuTiNbO a very promising candidate for low temperature magnetic refrigeration.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd