Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/2/10.1063/1.4941095
1.
1.C. B. Samantaray and R. N. Singh, Int. Mater. Rev. 50, 313 (2013).
http://dx.doi.org/10.1179/174328005X67160
2.
2.P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin, Mater. Sci. Eng. R: Rep. 21, 47 (1997).
http://dx.doi.org/10.1016/S0927-796X(97)00009-0
3.
3.F. R. Corrigan and F. P. Bundy, J. Chem. Phys. 63, 3812 (1975).
http://dx.doi.org/10.1063/1.431874
4.
4.V. L. Solozhenko, High Pressure Res. 13, 199 (1995).
http://dx.doi.org/10.1080/08957959508200884
5.
5.V. L. Solozhenko, V. Z. Turkevich, and W. B. Holzapfel, J. Phys. Chem. B 103, 2903 (1999).
http://dx.doi.org/10.1021/jp984682c
6.
6.C. Chen, Z. Wang, T. Kato, N. Shibata, T. Taniguchi, and Y. Ikuhara, Nat. Commun. 6, 6327 (2015).
http://dx.doi.org/10.1038/ncomms7327
7.
7.D. J. Kester and R. Messier, J. Appl. Phys. 72, 504 (1992).
http://dx.doi.org/10.1063/1.351881
8.
8.J. Narayan, H. Wu, and R. D. Vispute, J. Electron. Mater. 25, 143 (1996).
http://dx.doi.org/10.1007/BF02666188
9.
9.J. Narayan, Mater. Sci. Eng. B 45, 30 (1997).
http://dx.doi.org/10.1016/S0921-5107(96)01970-8
10.
10.J. C. Angus and C. C. Hayman, Science 241, 913 (1988).
http://dx.doi.org/10.1126/science.241.4868.913
11.
11.J. Narayan and A. Bhaumik, APL Mater. 3, 100702 (2015); Two U. S. patents pending (62/245,018 (2015) and 62/202,202 (2015)).
http://dx.doi.org/10.1063/1.4932622
12.
12.J. Narayan and A. Bhaumik, J. Appl. Phys. 118, 215303 (2015).
http://dx.doi.org/10.1063/1.4936595
13.
13.R. K. Singh and J. Narayan, Mater. Sci. Eng. B 3, 217 (1989).
http://dx.doi.org/10.1016/0921-5107(89)90014-7
14.
14.J. Narayan, J. Appl. Phys. 52, 1289 (1981).
http://dx.doi.org/10.1063/1.329753
15.
15.J. Narayan, Mater. Lett. 2, 219 (1984).
http://dx.doi.org/10.1016/0167-577X(84)90027-2
16.
16.S. Reich, A. C. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson, Phys. Rev. B 71, 205201 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205201
17.
17.K. Karch and F. Bechstedt, Phys. Rev. B 56, 7404 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.7404
18.
18.S. Prawer and R. J. Nemanich, Philos. Trans. R. Soc., A 362, 2537 (2004).
http://dx.doi.org/10.1098/rsta.2004.1451
19.
19.Y. Meng, H.-K. Mao, P. J. Eng, T. P. Trainor, M. Newville, M. Y. Hu, C. Kao, J. Shu, D. Hausermann, and R. J. Hemley, Nat. Mater. 3, 111 (2004).
http://dx.doi.org/10.1038/nmat1060
20.
20.D. G. McCulloch, D. W. M. Lau, R. J. Nicholls, and J. M. Perkins, Micron 43, 43 (2012).
http://dx.doi.org/10.1016/j.micron.2011.07.004
21.
21.J. Narayan and C. W. White, Appl. Phys. Lett. 44, 35 (1984).
http://dx.doi.org/10.1063/1.94594
22.
22.J. Narayan, C. W. White, O. W. Holland, and M. J. Aziz, J. Appl. Phys. 56, 1821 (1984).
http://dx.doi.org/10.1063/1.334192
23.
23.R. F. Wood, D. H. Lowndes, and J. Narayan, Appl. Phys. Lett. 44, 770 (1984).
http://dx.doi.org/10.1063/1.94912
24.
24.D. H. Lowndes, R. F. Wood, and J. Narayan, Phys. Rev. Lett. 52, 561 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.561
25.
25.B. C. Larson, J. Z. Tischler, and D. M. Mills, J. Mater. Res. 1, 144 (2011).
http://dx.doi.org/10.1557/JMR.1986.0144
26.
26.J. Z. Tischler, B. C. Larson, and D. M. Mills, Appl. Phys. Lett. 52, 1785 (1988).
http://dx.doi.org/10.1063/1.99625
27.
27.J. Steinbeck, G. Braunstein, M. S. Dresselhaus, T. Venkatesan, and D. C. Jacobson, J. Appl. Phys. 58, 4374 (1985).
http://dx.doi.org/10.1063/1.335527
28.
28.J. Steinbeck, G. Braunstein, G. Dresselhaus, M. S. Dresselhaus, T. Venkatesan, and D. C. Jacobson, J. Appl. Phys. 64, 1802 (1988).
http://dx.doi.org/10.1063/1.341779
29.
29.L. C. Nistor, G. Epurescu, M. Dinescu, and G. Dinescu, IOP Conf. Ser.: Mater. Sci. Eng. 15, 012067 (2010).
http://dx.doi.org/10.1088/1757-899X/15/1/012067
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/2/10.1063/1.4941095
Loading
/content/aip/journal/aplmater/4/2/10.1063/1.4941095
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/2/10.1063/1.4941095
2016-02-03
2016-05-30

Abstract

We report a direct conversion of hexagonal boron nitride (h-BN) into pure cubic boron nitride (c-BN) by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN). The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/2/1.4941095.html;jsessionid=QLbsafNPGOiTKqbyxrSLcqAI.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/2/10.1063/1.4941095&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/2/10.1063/1.4941095&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/2/10.1063/1.4941095'
Right1,Right2,Right3,