Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/2/10.1063/1.4941713
1.
1.M. Woodhouse, A. Goodrich, R. Margolis, T. James, R. Dhere, T. Gessert, T. Barnes, R. Eggert, and D. Albin, Sol. Energy Mater. Sol. Cells 115, 199 (2013).
http://dx.doi.org/10.1016/j.solmat.2012.03.023
2.
2.M. Woodhouse, A. Goodrich, R. Margolis, T. L. James, M. Lokanc, and R. Eggert, “Supply-chain dynamics of tellurium, indium, and gallium within the context of PV module manufacturing costs,” IEEE J. Photovoltaics (published online 2012).
http://dx.doi.org/10.1109/jphotov.2012.2227991
3.
3.V. Steinmann, R. E. Brandt, and T. Buonassisi, Nat. Photonics 9, 355 (2015).
http://dx.doi.org/10.1038/nphoton.2015.85
4.
4.S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, and A. Subbarayan, Sol. Energy Mater. Sol. Cells 90, 694 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.04.006
5.
5.A. Abbas, P. Kaminski, G. West, K. Barth, W. Sampath, J. Bowers, and J. M. Walls, MRS Proc. 1738, mrsf14-1738-v03-03 (2015).
http://dx.doi.org/10.1557/opl.2015.177
6.
6.P. D. Paulson and V. Dutta, Thin Solid Films 370, 299 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)00912-3
7.
7.B. T. L. M. Mansfield, I. L. Repins, S. Glynn, J. W. Pankow, M. R. Young, C. DeHart, R. Sundaramoorthy, and C. L. Beall, in 2011 IEEE 37th Photovoltaic Specialists Conference (PVSC) (IEEE, 2014), pp. 3636–3641.
http://dx.doi.org/10.1109/PVSC.2011.6185937
8.
8.P. T. Erslev, J. W. Lee, W. N. Shafarman, and J. D. Cohen, Thin Solid Films 517, 2277 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.10.140
9.
9.A. Rockett, Thin Solid Films 480-481, 2 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.11.038
10.
10.W. M. Hlaing, J. L. Johnson, A. Bhatia, E. A. Lund, M. M. Nowell, and M. A. Scarpulla, J. Electron. Mater. 40, 2214 (2011).
http://dx.doi.org/10.1007/s11664-011-1729-3
11.
11.B. T. Gershon, Y. S. Lee, R. Mankad, O. Gunawan, T. Gokmen, D. Bishop, B. McCandless, and S. Guha, Appl. Phys. Lett. 106, 123905 (2015).
http://dx.doi.org/10.1063/1.4916635
12.
12.T. Gershon, B. Shin, N. Bojarczuk, M. Hopstaken, D. B. Mitzi, and S. Guha, Adv. Energy Mater. 5, 1400849 (2015).
http://dx.doi.org/10.1002/aenm.201400849
13.
13.K. T. Ramakrishna Reddy, N. Koteswara Reddy, and R. W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.06.012
14.
14.P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, and R. G. Gordon, Adv. Energy Mater. 1, 1116 (2011).
http://dx.doi.org/10.1002/aenm.201100330
15.
15.K. Hartman, J. L. Johnson, M. I. Bertoni, D. Recht, M. J. Aziz, M. A. Scarpulla, and T. Buonassisi, Thin Solid Films 519, 7421 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.12.186
16.
16.H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, and O. Omoto, Sol. Energy Mater. Sol. Cells 35, 325 (1994).
http://dx.doi.org/10.1016/0927-0248(94)90158-9
17.
17.R. Chakraborty, V. Steinmann, N. M. Mangan, R. E. Brandt, J. R. Poindexter, R. Jaramillo, J. P. Mailoa, K. Hartman, A. Polizzotti, C. Yang, R. G. Gordon, and T. Buonassisi, Appl. Phys. Lett. 106, 203901 (2015).
http://dx.doi.org/10.1063/1.4921326
18.
18.V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R. E. Brandt, J. R. Poindexter, Y. S. Lee, L. Sun, A. Polizzotti, H. H. Park, R. G. Gordon, and T. Buonassisi, Adv. Mater. 26, 7488 (2014).
http://dx.doi.org/10.1002/adma.201402219
19.
19.P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, and R. G. Gordon, Adv. Energy Mater. 4, 1400496 (2014).
http://dx.doi.org/10.1002/aenm.201400496
20.
20.H. H. Park, R. Heasley, L. Sun, V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, P. Sinsermsuksakul, D. Chua, T. Buonassisi, and R. G. Gordon, Prog. Photovoltaics 23, 901 (2014).
http://dx.doi.org/10.1002/pip.2504
21.
21.N. M. Mangan, R. E. Brandt, V. Steinmann, R. Jaramillo, J. V. Li, J. R. Poindexter, K. Hartman, L. Sun, R. G. Gordon, and T. Buonassisi, in 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC) (IEEE, 2014), pp. 23732378.
http://dx.doi.org/10.1109/PVSC.2014.6925404
22.
22.N. M. Mangan, R. E. Brandt, V. Steinmann, R. Jaramillo, C. Yang, J. R. Poindexter, R. Chakraborty, H. H. Park, X. Zhao, R. G. Gordon, and T. Buonassisi, J. Appl. Phys. 118, 115102 (2015).
http://dx.doi.org/10.1063/1.4930581
23.
23.J. R. Poindexter, R. E. Brandt, N. M. Mangan, and T. Buonassisi, MRS Proc. 1771, 139 (2015).
http://dx.doi.org/10.1557/opl.2015.483
24.
24.J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, and J. Tate, Appl. Phys. Lett. 100, 032104 (2012).
http://dx.doi.org/10.1063/1.3675880
25.
25.B. D. Malone, A. Gali, and E. Kaxiras, Phys. Chem. Chem. Phys. 16, 26176 (2014).
http://dx.doi.org/10.1039/C4CP03010A
26.
26.M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Prog. Photovoltaics 12, 143 (2004).
http://dx.doi.org/10.1002/pip.524
27.
27.R. Jaramillo, V. Steinmann, C. Yang, K. Hartman, R. Chakraborty, J. R. Poindexter, M. L. Castillo, R. Gordon, and T. Buonassisi, J. Visualized Exp. 99, e52705 (2015).
http://dx.doi.org/10.3791/52705
28.
28.R. Jaramillo, M.-J. Sher, B. K. Ofori-Okai, V. Steinmann, C. Yang, K. Hartman, K. A. Nelson, A. M. Lindenberg, R. G. Gordon, and T. Buonassisi, J. Appl. Phys. 119, 035101 (2016).
http://dx.doi.org/10.1063/1.4940157
29.
29.S. Schuler, S. Siebentritt, S. Nishiwaki, N. Rega, J. Beckmann, S. Brehme, and M. C. Lux-Steiner, Phys. Rev. B 69, 045210 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045210
30.
30.A. Nagaoka, H. Miyake, T. Taniyama, K. Kakimoto, Y. Nose, M. A. Scarpulla, and K. Yoshino, Appl. Phys. Lett. 104, 152101 (2014).
http://dx.doi.org/10.1063/1.4871208
31.
31.K. Hartman, “Annealing for intrinsic point-defect control and enhanced solar cell performance: The case of H2S and tin sulfide (SnS),” Ph.D. thesis, Massachusetts Institute of Technology, 2015.
32.
32.G. Coletti, R. Kvande, V. D. Mihailetchi, L. J. Geerligs, L. Arnberg, and E. J. Ovrelid, J. Appl. Phys. 104, 104913 (2008).
http://dx.doi.org/10.1063/1.3021355
33.
33.D. P. Fenning, A. S. Zuschlag, M. I. Bertoni, B. Lai, G. Hahn, and T. Buonassisi, J. Appl. Phys. 113, 214504 (2013).
http://dx.doi.org/10.1063/1.4808310
34.
34.B. Michl, J. Schön, F. Schindler, W. Warta, and M. C. Schubert, in 27th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC Proceedings, 2012), p. 709
http://dx.doi.org/10.4229/27thEUPVSEC2012-2CO.13.1
35.
35.M. A. Jensen, J. Hofstetter, A. E. Morishige, G. Coletti, B. Lai, D. P. Fenning, and T. Buonassisi, Appl. Phys. Lett. 106, 202104 (2015).
http://dx.doi.org/10.1063/1.4921619
36.
36.A. D. Collord, H. Xin, and H. W. Hillhouse, IEEE J. Photovoltaics 5, 288 (2015).
http://dx.doi.org/10.1109/JPHOTOV.2014.2361053
37.
37.D. Parker and D. J. Singh, J. Appl. Phys. 108, 1 (2010).
http://dx.doi.org/10.1063/1.3496661
38.
38.Q. Tan, L.-D. Zhao, J.-F. Li, C.-F. Wu, T.-R. Wei, Z.-B. Xing, and M. G. Kanatzidis, J. Mater. Chem. A 2, 17302 (2014).
http://dx.doi.org/10.1039/C4TA04462B
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/2/10.1063/1.4941713
Loading
/content/aip/journal/aplmater/4/2/10.1063/1.4941713
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/2/10.1063/1.4941713
2016-02-12
2016-09-30

Abstract

Through empirical observations, sodium(Na) has been identified as a benign contaminant in some thin-filmsolar cells. Here, we intentionally contaminate thermally evaporated tin sulfide (SnS)thin-films with sodium and measure the SnS absorber properties and solar cellcharacteristics. The carrier concentration increases from 2 × 1016 cm−3 to 4.3 × 1017 cm−3 in Na-doped SnSthin-films, when using a 13 nm NaCl seed layer, which is detrimental for SnS photovoltaic applications but could make Na-doped SnS an attractive candidate in thermoelectrics. The observed trend in carrier concentration is in good agreement with density functional theory calculations, which predict an acceptor-type Na defect with low formation energy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/2/1.4941713.html;jsessionid=2CW6i_yKyvM-vRkA829thu3V.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/2/10.1063/1.4941713&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/2/10.1063/1.4941713&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/2/10.1063/1.4941713'
Top,Right1,Right2,Right3,