Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/3/10.1063/1.4942636
1.
1.S. C. Chappert, A. Fert, and F. N. Van Dau, Nat. Mater. 6, 813 (2007).
http://dx.doi.org/10.1038/nmat2024
2.
2.W.-G. Wang, M. Li, S. Hagemann, and C. L. Chien, Nat. Mater. 11, 64 (2012).
http://dx.doi.org/10.1038/nmat3171
3.
3.P. Gambardella and I. M. Miron, Philos. Trans. R. Soc., A 369, 3175 (2011).
http://dx.doi.org/10.1098/rsta.2010.0336
4.
4.K.-S. Ryu, L. Thomas, S.-H. Yang, and S. Parkin, Nat. Nanotechnol. 8, 527 (2013).
http://dx.doi.org/10.1038/nnano.2013.102
5.
5.F. Matsukura, Y. Tokura, and H. Ohno, Nat. Nanotechnol. 10, 209 (2015).
http://dx.doi.org/10.1038/nnano.2015.22
6.
6.Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki, Nat. Mater. 11, 39 (2012).
http://dx.doi.org/10.1038/nmat3172
7.
7.E. Y. Tsymbal, Nat. Mater. 11, 12 (2012).
http://dx.doi.org/10.1038/nmat3205
8.
8.S. Emori, U. Bauer, S. Woo, and G. S. D. Beach, Appl. Phys. Lett. 105, 222401 (2014).
http://dx.doi.org/10.1063/1.4903041
9.
9.A. Chen, J. Hutchby, V. Zhirnov, and G. Bourianoff, Emerging Nanoelectronic Devices (J. Wiley & Sons Ltd., Chichester, 2015), p. 69.
10.
10.X. Zhang, Y. Zhou, M. Ezawa, G. P. Zhao, and W. Zhao, Sci. Rep. 5, 11369 (2015).
http://dx.doi.org/10.1038/srep11369
11.
11.H. J. A. Molegraaf, J. Hoffmann, C. A. F. Vaz, S. Gariglio, D. van der Marel, C. H. Ahn, and J.-M. Triscone, Adv. Mater. 21, 3470 (2009).
http://dx.doi.org/10.1002/adma.200900278
12.
12.X. Nie and S. Blügel, European Patent No. 1099217 (2000).
13.
13.H. Zhang, M. Richter, K. Koepernik, I. Opahle, F. Tasnadi, and H. Eschrig, New J. Phys. 11, 043007 (2009).
http://dx.doi.org/10.1088/1367-2630/11/4/043007
14.
14.D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, Nat. Commun. 3, 888 (2012).
http://dx.doi.org/10.1038/ncomms1888
15.
15.D. Chiba and T. Ono, J. Phys. D: Appl. Phys. 46, 213001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/21/213001
16.
16.U. Bauer, M. Przybylski, and G. S. D. Beach, Phys. Rev. B 89, 174402 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.174402
17.
17.T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nat. Nanotechnol. 4, 158 (2009).
http://dx.doi.org/10.1038/nnano.2008.406
18.
18.M. K. Niranjan, C.-G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Appl. Phys. Lett. 96, 222504 (2010).
http://dx.doi.org/10.1063/1.3443658
19.
19.R. O. Cherifi, V. Ivanovskaya, L. C. Phillips, A. Zobelli, I. C. Infante, E. Jacquet, V. Garcia, S. Fusil, P. R. Briddon, N. Guiblin, A. Mougin, A. A. Ünal, F. Kronast, S. Valencia, B. Dkhil, A. Barthelemy, and M. Bibes, Nat. Mater. 13, 345 (2014).
http://dx.doi.org/10.1038/nmat3870
20.
20.K. Leistner, J. Wunderwald, N. Lange, S. Oswald, M. Richter, H. Zhang, L. Schultz, and S. Fähler, Phys. Rev. B 87, 224411 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.224411
21.
21.M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science 315, 349 (2007).
http://dx.doi.org/10.1126/science.1136629
22.
22.L. Reichel, S. Oswald, S. Fähler, L. Schultz, and K. Leistner, J. Appl. Phys. 113, 143904 (2013).
http://dx.doi.org/10.1063/1.4799413
23.
23.A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11, 273 (2012).
http://dx.doi.org/10.1038/nmat3311
24.
24.M. Zhernenkov, M. R. Fitzsimmons, J. Chlistunoff, and J. Majewski, Phys. Rev. B 82, 024420 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.024420
25.
25.U. Bauer, S. Emori, and G. S. D. Beach, Nat. Nanotechnol. 8, 411 (2013).
http://dx.doi.org/10.1038/nnano.2013.96
26.
26.U. Bauer, L. Yao, A. J. Tan, P. Agrawal, S. Emori, H. L. Tuller, S. van Dijken, and G. S. D. Beach, Nat. Mater. 14, 174 (2015).
http://dx.doi.org/10.1038/nmat4134
27.
27.N. Tournerie, A. P. Engelhardt, F. Maroun, and P. Allongue, Phys. Rev. B 86, 104434 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.104434
28.
28.N. Di, J. Kubal, Z. Zeng, J. Greeley, F. Maroun, and P. Allongue, Appl. Phys. Lett. 106, 122405 (2015).
http://dx.doi.org/10.1063/1.4916554
29.
29.F. Bonell, Y. T. Takahashi, D. D. Lam, S. Yoshida, Y. Shiota, S. Miwa, T. Nakamura, and Y. Suzuki, Appl. Phys. Lett. 102, 152401 (2013).
http://dx.doi.org/10.1063/1.4802030
30.
30.K. Leistner, N. Lange, S. Oswald, F. Scheiba, S. Fähler, H. Schlörb, and L. Schultz, Electrochim. Acta 81, 330 (2012).
http://dx.doi.org/10.1016/j.electacta.2012.07.055
31.
31.N. Sato, T. Noda, and K. Kudo, Electrochim. Acta 19, 471 (1974).
http://dx.doi.org/10.1016/0013-4686(74)87026-X
32.
32.Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Int. J. Hydrogen Energy 34, 4889 (2009).
http://dx.doi.org/10.1016/j.ijhydene.2009.04.005
33.
33.B. Laenens, N. Planckaert, J. Demeter, M. Trekels, C. L’abbe, C. Strohm, R. Rüffer, K. Temst, A. Vantomme, and J. Meersschaut, Phys. Rev. B 82, 104421 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.104421
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4942636 for (I) Pt buffer layer thickness dependence of AHE; (II) HR-TEM, FFT, and inverse FFT for dislocation analysis for 3 nm L10-FePt(001) on Pt(001); (III) X-ray diffraction spectra and AHE measurements for L10-FePt films in comparison to Fe-O/Fe/L10-FePt films; as well as (IV) STEM and EELS analyses of the Fe-O/Fe/FePt films after electrochemical polarization.[Supplementary Material]
35.
35.M.-A. Paun, J.-M. Sallese, and M. Kayal, U.P.B. Sci. Bull. 72, 1223 (2010).
36.
36.P. Bruno and J.-P. Renard, Appl. Phys. A 49, 499 (1989).
http://dx.doi.org/10.1007/BF00617016
37.
37.T. Sato, T. Goto, H. Ogata, K. Yamaguchi, and H. Yoshida, J. Magn. Magn. Mater. 272, E951 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.261
38.
38.Y. J. Chen, H. Y. Ho, C. C. Tseng, and C. S. Shern, Surf. Sci. 601, 4334 (2007).
http://dx.doi.org/10.1016/j.susc.2007.04.121
39.
39.K. T. Riggs, E. D. Dahlberg, and G. A. Prinz, J. Magn. Magn. Mater. 73, 46 (1988).
http://dx.doi.org/10.1016/0304-8853(88)90166-7
40.
40.R. M. Cornell and U. Schwertmann, The Iron Oxides (VCH Verlagsgesellschaft mbH, Weinheim, 1996), p. 458.
41.
41.P. Periasamy, B. Ramesh Babu, and S. Venkatakrishna Iyer, J. Power Sources 58, 35 (1996).
http://dx.doi.org/10.1016/0378-7753(95)02274-0
42.
42.O. A. Albani, J. O. Zerbino, J. R. Vilche, and A. J. Arvia, Electrochim. Acta 31, 1403 (1986).
http://dx.doi.org/10.1016/0013-4686(86)87052-9
43.
43.A. J. Bard, M. Stratmann, and E. J. Calvo, Encyclopedia of Electrochemistry (Wiley-VCH, Weinheim, 2003), Vol. 2, p. 251.
44.
44.Z. Petrovic, M. Metikos-Hukovic, and R. Babic, Electrochim. Acta 75, 406 (2012).
http://dx.doi.org/10.1016/j.electacta.2012.05.031
45.
45.T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 85, 2571 (2004).
http://dx.doi.org/10.1063/1.1794863
46.
46.M. H. Hong, K. Hono, and M. Watanabe, J. Appl. Phys. 84, 4403 (1998).
http://dx.doi.org/10.1063/1.368662
47.
47.F. Casoli, F. Albertini, L. Nasi, S. Fabricci, R. Cabassi, F. Bolzoni, and C. Bocchi, Appl. Phys. Lett. 92, 142506 (2008).
http://dx.doi.org/10.1063/1.2905294
48.
48.H. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, Nat. Commun. 3, 917 (2012).
http://dx.doi.org/10.1038/ncomms1921
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/3/10.1063/1.4942636
Loading
/content/aip/journal/aplmater/4/3/10.1063/1.4942636
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/3/10.1063/1.4942636
2016-02-24
2016-09-25

Abstract

Electric field control of magnetization and anisotropy in layered structures with perpendicular magnetic anisotropy is expected to increase the versatility of spintronic devices. As a model system for reversible voltage induced changes of magnetism by magnetoionic effects, we present several oxide/metal heterostructures polarized in an electrolyte. Room temperature magnetization of Fe-O/Fe layers can be changed by 64% when applying only a few volts in 1M KOH. In a next step, the bottom interface of the in-plane magnetized Fe layer is functionalized by an L1 FePt(001) underlayer exhibiting perpendicular magnetic anisotropy. During subsequent electrocrystallization and electrooxidation, well defined epitaxial FeO/Fe/FePt heterostructures evolve. The application of different voltages leads to a thickness change of the Fe layer sandwiched between Fe-O and FePt. At the point of transition between rigid magnet and exchange spring magnet regime for the Fe/FePt bilayer, this induces a large variation of magnetic anisotropy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/3/1.4942636.html;jsessionid=qWeRXJGtz-D-bsTOSXHt_MwN.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/3/10.1063/1.4942636&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/3/10.1063/1.4942636&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/3/10.1063/1.4942636'
Top,Right1,Right2,Right3,