Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/3/10.1063/1.4943012
1.
1.S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
2.
2.T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007).
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084259
3.
3.Y. Tokura and S. Seki, Adv. Mater. 22, 1554 (2010).
http://dx.doi.org/10.1002/adma.200901961
4.
4.R. D. Johnson and P. G. Radaelli, Annu. Rev. Mater. Res. 44, 269 (2014).
http://dx.doi.org/10.1146/annurev-matsci-070813-113524
5.
5.J. W. Kim, S. Khim, S. H. Chun, Y. Jo, L. Balicas, H. T. Yi, S.-W. Cheong, N. Harrison, C. D. Batista, J. H. Han, and K. H. Kim, Nat. Commun. 5, 4419 (2014).
http://dx.doi.org/10.1038/ncomms5419
6.
6.B. J. Gibson, R. K. Kremer, A. V. Prokofiev, W. Assmus, and G. J. McIntyre, Physica B 350, E253 (2004).
http://dx.doi.org/10.1016/j.physb.2004.03.064
7.
7.Y. Yasui, Y. Naito, K. Sato, T. Moyoshi, M. Sato, and K. Kakurai, J. Phys. Soc. Jpn. 77, 023712 (2008).
http://dx.doi.org/10.1143/JPSJ.77.023712
8.
8.S. Park, Y. J. Choi, C. L. Zhang, and S.-W. Cheong, Phys. Rev. Lett. 98, 057601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.057601
9.
9.S. Seki, Y. Yamasaki, M. Soda, M. Matsuura, K. Hirota, and Y. Tokura, Phys. Rev. Lett. 100, 127201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.127201
10.
10.Y. Yasui, K. Sato, Y. Kobayashi, and M. Sato, J. Phys. Soc. Jpn. 78, 084720 (2009).
http://dx.doi.org/10.1143/JPSJ.78.084720
11.
11.S. Seki, T. Kurumaji, S. Ishiwata, H. Matsui, H. Murakawa, Y. Tokunaga, Y. Kaneko, T. Hasegawa, and Y. Tokura, Phys. Rev. B 82, 064424 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.064424
12.
12.L. Zhao, T.-L. Hung, C.-C. Li, Y.-Y. Chen, M.-K. Wu, R. K. Kremer, M. G. Banks, A. Simon, M.-H. Whangbo, C. Lee, J. S. Kim, I. Kim, and K. H. Kim, Adv. Mater. 24, 2469 (2012).
http://dx.doi.org/10.1002/adma.201200734
13.
13.B. Willenberg, M. Schäpers, K. C. Rule, S. Süllow, M. Reehuis, H. Ryll, B. Klemke, K. Kiefer, W. Schottenhamel, B. Büchner, B. Ouladdiaf, M. Uhlarz, R. Beyer, J. Wosnitza, and A. U. B. Wolter, Phys. Rev. Lett. 108, 117202 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.117202
14.
14.Y. Yasui, M. Sato, and I. Terasaki, J. Phys. Soc. Jpn. 80, 033707 (2011);
http://dx.doi.org/10.1143/JPSJ.80.033707
14.Y. Yasui, Y. Yanagisawa, M. Sato, and I. Terasaki, J. Phys.: Conf. Ser. 320, 012087 (2011).
http://dx.doi.org/10.1088/1742-6596/320/1/012087
15.
15.J. M. Law, P. Reuvekamp, R. Glaum, C. Lee, J. Kang, M.-H. Whangbo, and R. K. Kremer, Phys. Rev. B 84, 014426 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.014426
16.
16.H. Katsura, N. Nagaosa, and A. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.057205
17.
17.M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.067601
18.
18.C. Jia, S. Onoda, N. Nagaosa, and J.-H. Han, Phys. Rev. B 76, 144424 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.144424
19.
19.R. Bursill, G. A. Gehring, D. J. J. Farnell, J. B. Parkinson, T. Xiang, and C. Zeng, J. Phys.: Condens. Matter 7, 8605 (1995).
http://dx.doi.org/10.1088/0953-8984/7/45/016
20.
20.T. Tonegawa and I. Harada, J. Phys. Soc. Jpn. 58, 2902 (1989).
http://dx.doi.org/10.1143/JPSJ.58.2902
21.
21.T. Hikihara, L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B 78, 144404 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.144404
22.
22.M. Sato, T. Momoi, and A. Furusaki, Phys. Rev. B 79, 060406 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.060406
23.
23.S. Furukawa, M. Sato, and S. Onoda, Phys. Rev. Lett. 105, 257205 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.257205
24.
24.N. Büttgen, K. Nawa, T. Fujita, M. Hagiwara, P. Kuhns, A. Prokofiev, A. P. Reyes, L. E. Svistov, K. Yoshimura, and M. Takigawa, Phys. Rev. B 90, 134401 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.134401
25.
25.M. Hase, H. Kuroe, K. Ozawa, O. Suzuki, H. Kitazawa, G. Kido, and T. Sekine, Phys. Rev. B 70, 104426 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.104426
26.
26.Y. Yasui, Y. Yanagisawa, R. Okazaki, and I. Terasaki, Phys. Rev. B 87, 054411 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.054411
27.
27.Y. Yasui, Y. Yanagisawa, R. Okazaki, I. Terasaki, Y. Yamaguchi, and T. Kimura, J. Appl. Phys. 113, 17D910 (2013).
http://dx.doi.org/10.1063/1.4795844
28.
28.Y. S. Chai, Y. S. Oh, L. J. Wang, N. Manivannan, S. M. Feng, Y. S. Yang, L. Q. Yan, C. Q. Jin, and K. H. Kim, Phys. Rev. B 85, 184406 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.184406
29.
29.C. De, S. Ghara, and A. Sundaresan, Solid State Commun. 205, 61 (2015).
http://dx.doi.org/10.1016/j.ssc.2015.01.002
30.
30.N. Ahmed, A. A. Tsirlin, and R. Nath, Phys. Rev. B 91, 214413 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.214413
31.
31.B. Koteswararao, S. K. Panda, R. Kumar, K. Yoo, A. V. Mahajan, I. Dasguptha, B. H. Chen, K. Hoon Kim, and F. C. Chou, J. Phys.: Condens. Matter 27, 426001 (2015).
http://dx.doi.org/10.1088/0953-8984/27/42/426001
32.
32.L. Wulff and H. Müller-Buschbaum, Z. Naturforsch. B 52, 1341 (1997).
http://dx.doi.org/10.1515/znb-1997-1111
33.
33.Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys. Rev. Lett. 99, 137207 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.137207
34.
34.B. Koteswararao, R. Kumar, P. Khuntia, S. Bhowal, S. K. Panda, M. R. Rahman, A. V. Mahajan, I. Dasgupta, M. Baenitz, K. H. Kim, and F. C. Chou, Phys. Rev. B 90, 035141 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.035141
35.
35.I. Kim, B.-G. Jeon, D. Patil, S. Patil, G. Nénert, and K. H. Kim, J. Phys.: Condens. Matter 24, 306001 (2012).
http://dx.doi.org/10.1088/0953-8984/24/30/306001
36.
36.M. Ackermann, L. Andersen, T. Lorenz, L. Bohatý, and P. Becker, New J. Phys. 17, 013045 (2015).
http://dx.doi.org/10.1088/1367-2630/17/1/013045
37.
37.Y. S. Oh, S. Artyukhin, J. J. Yang, V. Zapf, J. W. Kim, D. Vanderbilt, and S. W. Cheong, Nat. Commun. 5, 3201 (2014).
http://dx.doi.org/10.1038/ncomms4201
38.
38.Y. Wang, G. L. Pascut, B. Gao, T. A. Tyson, K. Haule, V. Kiryukhin, and S.-W. Cheong, Sci. Rep. 5, 12268 (2015).
http://dx.doi.org/10.1038/srep12268
39.
39.T. Masuda, A. Zheludev, B. Roessli, A. Bush, M. Markina, and A. Vasiliev, Phys. Rev. B 72, 014405 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014405
40.
40.A. A. Bush, V. N. Glazkov, M. Hagiwara, T. Kashiwagi, S. Kimura, K. Omura, L. A. Prozorova, L. E. Svistov, A. M. Vasiliev, and A. Zheludev, Phys. Rev. B 85, 054421 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.054421
41.
41.J. Sirker, Phys. Rev. B 81, 014419 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.014419
42.
42.S. Nishimoto, S.-L. Drechsler, R. Kuzian, J. Richter, J. Málek, M. Schmitt, J. van den Brink, and H. Rosner, Europhys. Lett. 98, 37007 (2012).
http://dx.doi.org/10.1209/0295-5075/98/37007
43.
43.A. U. B. Wolter, F. Lipps, M. Schapers, S.-L. Drechsler, S. Nishimoto, R. Vogel, V. Kataev, B. Buchner, H. Rosner, M. Schmitt, M. Uhlarz, Y. Skourski, J. Wosnitza, S. Sullow, and K. C. Rule, Phys. Rev. B 85, 014407 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.014407
44.
44.C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1399 (1969).
http://dx.doi.org/10.1063/1.1664979
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/3/10.1063/1.4943012
Loading
/content/aip/journal/aplmater/4/3/10.1063/1.4943012
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/3/10.1063/1.4943012
2016-03-01
2016-09-26

Abstract

The magnetoelectric effects are investigated in a cubic compound SrCuTeO, in which uniform Cu2+ ( = 1/2) spin chains with considerable spin frustration exhibit a concomitant antiferromagnetic transition and dielectric constant peak at ≈ 5.5 K. Pyroelectric() and magnetoelectric current() measurements in the presence of a bias electric field are used to reveal that SrCuTeO shows clear variations of () across at constant magnetic fields. Furthermore, isothermal measurements of () also develop clear peaks at finite magnetic fields, of which traces are consistent with the spin-flop transitions observed in the magnetization studies. As a result, the anomalies observed in () and () curves match well with the field-temperature phase diagram constructed from magnetization and dielectric constant measurements, demonstrating that SrCuTeO is a new magnetoelectric compound with = 1/2 spin chains.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/3/1.4943012.html;jsessionid=0A8jw6eCkQYvlJRz_eQQp0r7.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/3/10.1063/1.4943012&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/3/10.1063/1.4943012&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/3/10.1063/1.4943012'
Top,Right1,Right2,Right3,