Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/3/10.1063/1.4943076
1.
1.A. Hoffmann and S. D. Bader, “Opportunities at the frontier of spintronics,” Phys. Rev. Appl. 4, 047001 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.4.047001
2.
2.L. Q. Liu et al., “Spin torque switching with the giant spin Hall effect of tantalum,” Science 336, 555558 (2012).
http://dx.doi.org/10.1126/science.1218197
3.
3.L. Q. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, “Spin-torque ferromagnetic resonance induced by the spin Hall effect,” Phys. Rev. Lett. 106, 036601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.036601
4.
4.W. Zhang et al., “Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited),” J. Appl. Phys. 117, 172610 (2015).
http://dx.doi.org/10.1063/1.4913887
5.
5.A. Hoffmann, “Spin Hall effects in metals,” IEEE Trans. Magn. 49, 5172 (2013).
http://dx.doi.org/10.1109/TMAG.2013.2262947
6.
6.W. Zhang et al., “Spin Hall effects in metallic antiferromagnets,” Phys. Rev. Lett. 113, 196602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.196602
7.
7.W. Zhang et al., “All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects,” Phys. Rev. B 92, 144405 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.144405
8.
8.A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New perspectives for Rashba spin-orbit coupling,” Nat. Mater. 14, 871882 (2015).
http://dx.doi.org/10.1038/nmat4360
9.
9.V. M. Edelstein, “Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems,” Solid State Commun. 73, 233235 (1990).
http://dx.doi.org/10.1016/0038-1098(90)90963-C
10.
10.A. Chernyshov et al., “Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field,” Nat. Phys. 5, 656659 (2009).
http://dx.doi.org/10.1038/nphys1362
11.
11.J. C. Rojas-Sanchez et al., “Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials,” Nat. Commun. 4, 2944 (2013).
http://dx.doi.org/10.1038/ncomms3944
12.
12.K. Chen and S. Zhang, “Spin pumping in the presence of spin-orbit coupling,” Phys. Rev. Lett. 114, 126602 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.126602
13.
13.W. Zhang, M. B. Jungfleisch, W. Jiang, J. E. Pearson, and A. Hoffmann, “Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb,” J. Appl. Phys. 117, 17C727 (2015).
http://dx.doi.org/10.1063/1.4915479
14.
14.M. B. Jungfleisch, W. Zhang, J. Sklenar, W. Jiang, J. E. Pearson, J. B. Ketterson, and A. Hoffmann, “Interface-driven spin-torque ferromagnetic resonance by Rashba coupling at the interface between non-magnetic materials,” e-print arXiv:1508.01410.
15.
15.X. Fan, H. Celik, J. Wu, C. Ni, K. J. Lee, V. O. Lorenz, and J. Q. Xiao, “Quantifying interface and bulk contributions to spin-orbit torque in magnetic bilayers,” Nat. Commun. 5, 3042 (2014).
http://dx.doi.org/10.1038/ncomms4042
16.
16.J. B. S. Mendes et al., “Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet,” Phys. Rev. Lett. 115, 226601 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.226601
17.
17.A. R. Mellnik et al., “Spin-transfer torque generated by a topological insulator,” Nature 511, 449451 (2014).
http://dx.doi.org/10.1038/nature13534
18.
18.Y. Fan et al., “Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure,” Nat. Mater. 13, 699704 (2014).
http://dx.doi.org/10.1038/nmat3973
19.
19.D. Xiao, G. B. Liu, W. Feng, X. Xu, and Y. Wang, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.196802
20.
20.C. Cheng et al., “Direct observation of spin-to-charge conversion in MoS2 monolayer with spin pumping,” e-print arXiv:1510.03451.
21.
21.H. Yuan et al., “Zeeman-type spin splitting controlled by an electric field,” Nat. Phys. 9, 563569 (2013).
http://dx.doi.org/10.1038/nphys2691
22.
22.A. T. Neal, Y. Du, H. Liu, and P. D. Ye, “Two-dimensional TaSe2 metallic crystals: Spin-orbit scattering length and breakdown current density,” ACS Nano 8, 91379142 (2014).
http://dx.doi.org/10.1021/nn5027164
23.
23.A. Kormanyos et al., “Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides,” Phys. Rev. X 4, 011034 (2014).
http://dx.doi.org/10.1103/physrevx.4.011034
24.
24.D. Culcer and R. Winkler, “Generation of spin currents and spin densities in systems with reduced symmetry,” Phys. Rev. Lett. 99, 226601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.226601
25.
25.H. J. Juretschke, “Electromagnetic theory of dc effects in ferromagnetic resonance,” J. Appl. Phys. 31, 1401 (1960).
http://dx.doi.org/10.1063/1.1735851
26.
26.H. J. Juretschke, “dc detection of spin resonance in thin metallic films,” J. Appl. Phys. 34, 1223 (1963).
http://dx.doi.org/10.1063/1.1729445
27.
27.P. K. Chow et al., “Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides,” ACS Nano 9, 1520 (2015).
http://dx.doi.org/10.1021/nn5073495
28.
28.M. Harder, Z. X. Cao, Y. S. Gui, X. L. Fan, and C. -M. Hu, “Analysis of the line shape of electrically detected ferromagnetic resonance,” Phys. Rev. B 84, 054423 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.054423
29.
29.T. Chiba, M. Schreier, G. E. W. Bauer, and S. Takahashi, “Current-induced spin torque resonance of magnetic insulators affected by field-like spin-orbit torques and out-of-plane magnetizations,” J. Appl. Phys. 117, 17C715 (2015).
http://dx.doi.org/10.1063/1.4913632
30.
30.J. Sklenar, “Control of ferromagnetic resonance in thin films through nanostructuring and interfacial torques,” Ph.D. thesis, Northwestern University, 2015.
31.
31.P. B. Ndiaye, C. A. Akosa, M. H. Fischer, A. Vaezi, E. -A. Kim, and A. Manchon, “Dirac spin-orbit torques at the surface of topological insulators,” e-print arXiv:1509.06929.
32.
32.A. Tsukahara, Y. Ando, Y. Kitamura, H. Emoto, E. Shikoh, M. P. Delmo, T. Shinjo, and M. Shiraishi, “Self-induced inverse spin Hall effect in permalloy at room temperature,” Phys. Rev. B 89, 235317 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.235317
33.
33.M. Akyol, J. G. Alzate, G. Yu, P. Upadhyaya, K. L. Wong, A. Ekicibil, P. K. Amiri, and K. L. Wang, “Effect of the oxide layer on current-induced spin-orbit torques in Hf/CoFeB/MgO and Hf/CoFeB/TaOx structures,” Appl. Phys. Lett. 106, 032406 (2015).
http://dx.doi.org/10.1063/1.4906352
34.
34.W. Y. Wang et al., “Spin-valve effect in NiFe/MoS2/NiFe junctions,” Nano Lett. 15, 5261 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b01553
35.
35.S. Xu et al., “High-quality BN/WSe2/BN heterostructure and its quantum oscillations,” e-print arXiv:1503.08427.
36.
36.X. Cui et al., “Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform,” Nat. Nanotechnol. 10, 534 (2015).
http://dx.doi.org/10.1038/nnano.2015.70
37.
37.C. Ciccarelli, K. M. D. Hals, A. Irvine, V. Novak, Y. Tserkovnyak, H. Kurebayashi, A. Brataas, and A. Ferguson, “Magnonic charge pumping via spin-orbit coupling,” Nat. Nanotechnol. 10, 50 (2015).
http://dx.doi.org/10.1038/nnano.2014.252
38.
38.A. Azevedo et al., “Electrical detection of ferromagnetic resonance in single layers of permalloy: Evidence of magnonic charge pumping,” Phys. Rev. B 92, 024402 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.024402
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/3/10.1063/1.4943076
Loading
/content/aip/journal/aplmater/4/3/10.1063/1.4943076
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/3/10.1063/1.4943076
2016-03-03
2016-12-03

Abstract

We observe current induced spin transfertorque resonance in permalloy (Py) grown on monolayer MoS. By passing rf current through the Py/MoS bilayer, field-like and damping-like torques are induced which excite the ferromagnetic resonance of Py. The signals are detected via a homodyne voltage from anisotropic magnetoresistance of Py. In comparison to other bilayer systems with strong spin-orbit torques, the monolayer MoS cannot provide bulk spin Hall effects and thus indicates the purely interfacial nature of the spin transfer torques. Therefore our results indicate the potential of two-dimensional transition-metal dichalcogenide for the use of interfacial spin-orbitronics applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/3/1.4943076.html;jsessionid=2BQPvsOu3s9uzusKDDPiEml2.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/3/10.1063/1.4943076&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/3/10.1063/1.4943076&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/3/10.1063/1.4943076'
Top,Right1,Right2,Right3,