Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008).
2.A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim, and J. Park, Science 336, 1143 (2012).
3.A. K. Geim, Science 324, 1530 (2009).
4.C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Angew. Chem., Int. Ed. 48, 7752 (2009).
5.I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Nat. Nanotechnol. 3, 654 (2008).
6.F. Ouyang, S. Peng, Z. Liu, and Z. Liu, ACS Nano 5, 4023 (2011).
7.B. Rajbanshi, S. Sarkar, and P. Sarkar, J. Mater. Chem. C 2, 8967 (2014).
8.L. Kou, F. Hu, B. Yan, T. Frauenheim, and C. Chen, Nanoscale 6, 7474 (2014).
9.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
10.D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 8, 1102 (2014).
11.J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. S. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartlets, Adv. Mater. 26, 1399 (2014).
12.A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, J. Appl. Phys. 101, 014507 (2007).
13.H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, Nano Lett. 12, 3695 (2012).
14.A. Ebnonnasir, B. Narayanan, S. Kodambaka, and C. V. Ciobanu, Appl. Phys. Lett. 105, 031603 (2014).
15.W. Wu, D. De, S.-C. Chang, Y. Wang, H. Peng, J. Bao, and S.-S. Pei, Appl. Phys. Lett. 102, 142106 (2013).
16.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
17.H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, Small 8, 63 (2012).
18.Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, and J. Kong, Nano Lett. 13, 1852 (2013).
19.H. Liu, M. Si, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, J. Lou, and P. D. Ye, Nano Lett. 13, 2640 (2013).
20.G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).
21.H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, Angew. Chem., Int. Ed. 49, 4059 (2010).
22.W. M. R. Divigalpitiya, R. F. Frindt, and S. R. Morrison, Science 246, 369 (1989).
23.A. O’Neill, U. Khan, and J. N. Coleman, Chem. Mater. 24, 2414 (2012).
24.C. Backes, N. C. Bernel, X. Chen, P. Lafargue, P. LaPlace, M. Freeley, G. S. Duesberg, J. N. Coleman, and A. R. McDonald, Angew. Chem., Int. Ed. 54, 2638 (2015).
25.C. Muratore, J. J. Hu, B. Wang, M. A. Haque, J. E. Bultman, M. L. Jespersen, P. J. Shamberger, M. E. McConney, R. D. Naguy, and A. A. Voevodin, Appl. Phys. Lett. 104, 261604 (2014).
26.I. S. Kim, V. K. Sangwan, D. Jarowala, J. D. Wook, S. Park, K.-S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V. P. Dravid, T. J. Marks, M. C. Hersam, and L. J. Lauhon, ACS Nano 8, 10551 (2014).
27.S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, Chem. Mater. 26, 6371 (2014).
28.T. Zou, J. Tu, H. Huang, D. Lai, L. Zhang, and D. He, Adv. Eng. Mater. 8, 289 (2006).
29.C. Altavilla, M. Sarno, and P. Ciambelli, Chem. Mater. 23, 3879 (2011).
30.Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, Adv. Mater. 24, 2320 (2012).
31.Y. Zhan, Z. Liu, S. Najmaei, P. Ajayan, and J. Lou, Small 8, 966 (2012).
32.B. Visic, R. Dominko, M. K. Gunde, N. Hauptman, S. D. Skapin, and M. Remskar, Nanoscale Res. Lett. 6, 593 (2011).
33.C. Lee, H. Tan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
34.L. Benoista, D. Gonbeaua, G. Pfister-Guillouzoa, E. Schmidtb, G. Meunierb, and A. Levasseurb, Thin Solid Films 258, 110 (1995).
35.Th. Weber, J. C. Masers, and J. W. Niemantsverdriet, J. Phys. Chem. 99, 9194 (1995).
36.M. R. Laskar, L. Ma, S. Kannappan, P. S. Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, Appl. Phys. Lett. 102, 252108 (2013).
37.L. Ma, D. N. Nath, E. W. Lee II, C. H. Lee, M. Yu, A. Arehart, S. Rajan, and Y. Wu, Appl. Phys. Lett. 105, 072105 (2014).
38.Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, Nanoscale 4, 6637 (2012).

Data & Media loading...


Article metrics loading...



We established a process for growing highly ordered MoSthin films. The process consists of four steps: MoO thermal evaporation, first annealing, sulfurization, and second annealing. The main feature of this process is that thermally deposited MoOthin films are employed as a precursor for the MoS films. The first deposition step enabled us to achieve precise control of the resulting thickness of the MoS films with high uniformity. The crystalline structures, surface morphologies, and chemical states at each step were characterized by X-ray diffraction, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Based on these characterizations and a careful optimization of the growth conditions, we successfully produced a highly oriented MoSthin film with a thickness of five monolayers over an entire one-centimeter-square sapphire substrate.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd