Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Fujiwara, Y. Fukuma, J. Matsuno, H. Idzuchi, Y. Niimi, Y. Ohtani, and H. Takagi, Nat. Commun. 4, 2893 (2013).
2.K. A. Modic, T. E. Smidt, I. Kimchi, N. P. Breznay, A. Biffin, S. Choi, R. D. Johnson, R. Coldea, P. Watkins-Curry, G. T. McCandless, J. Y. Chan, F. Gandara, Z. Islam, A. Vishwanath, A. Shekhter, R. D. McDonald, and J. G. Analytis, Nat. Commun. 5, 4203 (2014).
3.D. Pesin and L. Balents, Nat. Phys. 6, 376 (2010).
4.J. G. Zhao, L. X. Yang, Y. Yu, F. Y. Li, R. C. Yu, Z. Fang, L. C. Chen, and C. Q. Jin, J. Appl. Phys. 103, 103706 (2008).
5.J. W. Kim, Y. Choi, J. Kim, J. F. Mitchell, G. Jackeli, M. Daghofer, J. van den Brink, G. Khaliulin, and B. J. Kim, Phys. Rev. Lett. 109, 037204 (2012).
6.Y. Okada, D. Walkup, H. Lin, C. Dhital, T.-R. Chang, S. Khadka, W. Zhou, H.-T. Jeng, M. Paranjape, A. Bansil, Z. Wang, S. D. Wilson, and V. Madhavan, Nat. Mater. 12, 707 (2013).
7.S. Fujiyama, K. Ohashi, H. Ohsumi, K. Sugimoto, T. Takayama, T. Komesu, M. Takata, T. Arima, and H. Takagi, Phys. Rev. B 86, 174414 (2012).
8.B. J. Kim, H. Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S. Leem, J. Yu, T. W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao, and E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008).
9.B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Science 323, 1329 (2009).
10.J. Kim, M. Daghofer, A. H. Said, T. Gog, J. Van den Brink, G. Khaliullin, and B. J. Kim, Nat. Commun. 5, 4453 (2014).
11.S. J. Moon, H. Jin, K. W. Kim, W. S. Choi, Y. S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, and T. W. Noh, Phys. Rev. Lett. 101, 226402 (2008).
12.J. H. Gruenewald, J. Nichols, J. Terzic, G. Cao, J. W. Brill, and S. S. A. Seo, J. Mater. Res. 29, 2491 (2014).
13.A. Biswas, K.-S. Kim, and Y. H. Jeong, J. Appl. Phys. 116, 213704 (2014).
14.J. Nichols, J. Terzic, E. G. Bittle, O. B. Korneta, L. E. De Long, J. W. Brill, G. Cao, and S. S. A. Seo, Appl. Phys. Lett. 102, 141908 (2013).
15.C. Lu, A. Quindeau, H. Deniz, D. Preziosi, D. Hesse, and M. Alexe, Appl. Phys. Lett. 105, 082407 (2014).
16.C. R. Serrao, J. Liu, J. T. Heron, G. Singh-Bhalla, A. Yadov, S. J. Suresha, R. J. Paull, D. Yi, J.-H. Chu, M. Trassin, A. Vishwanath, E. Arenholz, C. Frontera, J. Železný, T. Jungwirth, X. Marti, and R. Ramesh, Phys. Rev. B 87, 085121 (2013).
17.J. Matsuno, K. Ihara, S. Yamamura, H. Wadati, K. Ishii, V. V. Shankar, H.-Y. Kee, and H. Takagi, Phys. Rev. Lett. 114, 247209 (2015).
18.I. Barin, Thermochemical Data of Pure Substances, 3rd ed. (VCH, New York, 1995).
19.T. Ohnishi, M. Lippma, T. Yamamoto, S. Meguro, and H. Koinuma, Appl. Phys. Lett. 87, 241919 (2005).
20.J. H. Song, T. Susaki, and H. Y. Hwang, Adv. Mater. 20, 2528 (2008).
21.H. K. Sato, C. Bell, Y. Hikita, and H. Y. Hwang, Appl. Phys. Lett. 102, 251602 (2013).
22.D. G. Schlom, Y. Jia, L.-N. Zou, J. H. Hanei, S. Briczinski, M. A. Zurbuchen, C. W. Leitz, M. Madhavan, S. Wozniak, Y. Liu, M. E. Hawley, G. W. Brown, A. Dabkowski, H. A. Dabkowska, R. Uecker, and P. Reiche, Proc. SPIE 3481, 226 (1998).
23.S. Ohashi, M. Lippmaa, N. Nakagawa, H. Nagasawa, H. Koinuma, and M. Kawasaki, Rev. Sci. Instrum. 70, 178 (1999).
24.T. Ohnishi and K. Takada, Appl. Phys. Express 4, 025501 (2011).
25.T. Ohnishi, H. Koinuma, and M. Lippmaa, Appl. Surf. Sci. 252, 2466 (2006).
26.Y. K. Kim, A. Sumi, K. Takahashi, S. Yokoyama, S. Ito, T. Watanabe, K. Akiyama, S. Kaneko, K. Sato, and H. Funakubo, Jpn. J. Appl. Phys., Part 2 45, L36 (2006).
27.J. M. Longo, J. A. Kafalas, and R. J. Arnott, J. Solid State Chem. 3, 174 (1971).
28.M. A. Subramanian, M. K. Crawford, and R. L. Harlow, Mater. Res. Bull. 29, 645 (1994).
29.H. Matsuhata, I. Nagai, Y. Yoshida, S. Hara, S. Ikeda, and N. Shirakawa, J. Solid State Chem. 177, 3776 (2004).
30.See supplementary material at for the XRD patterns of the films in Fig. 2 and chemical equilibria for other RP phases.[Supplementary Material]
31.Q. Huang, J. L. Soubeyroux, O. Chmaissem, I. N. Sora, A. Santoro, R. J. Cava, J. J. Krajewski, and W. F. Peck, Jr., J. Solid State Chem. 112, 355 (1994).
32.K. Shibuya, S. Mi, C.-L. Jia, P. Meuffels, and R. Dittmann, Appl. Phys. Lett. 92, 241918 (2008).
33.D. Kan and Y. Shimakawa, Appl. Phys. Lett. 99, 081907 (2011).
34.K. T. Jacob, T. H. Okabe, T. Uda, and Y. Waseda, J. Alloys Compd. 288, 188 (1999).
35.D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (John Wiley & Sons, New York, 1994).
36.Y. F. Nie, Y. Zhu, C.-H. Lee, L. F. Kourkoutis, J. A. Mundy, J. Junquera, Ph. Ghosez, D. J. Baek, S. Sung, X. X. Xi, K. M. Shen, D. A. Muller, and D. G. Schlom, Nat. Commun. 5, 4530 (2014).
37.J. H. Lee, G. Luo, I. C. Tung, S. H. Chang, Z. Luo, M. Malshe, M. Gadre, A. Bhattacharya, S. M. Nakhmanson, J. A. Eastman, H. Hong, J. Jellinek, D. Morgan, D. D. Fong, and J. W. Freeland, Nat. Mater. 13, 879 (2014).

Data & Media loading...


Article metrics loading...



We demonstrate the selective fabrication of Ruddlesden-Popper (RP) type SrIrO, SrIrO, and SrIrOepitaxialthin films from a single SrIrO target using pulsed laser deposition(PLD). We identified that the growth conditions stabilizing each phase directly map onto the phase diagram expected from thermodynamic equilibria. This approach allows precise cation stoichiometry control as evidenced by the stabilization of single phase SrIrO for the first time, overcoming the close thermodynamic stability between neighboring RP phases. Despite the non-equilibrium nature of PLD, these results highlight the importance of thermodynamic guiding principles to strategically synthesize the targeted phase in complex oxide thin films.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd