Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/3/10.1063/1.4943681
1.
1.D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B 74, 155426 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155426
2.
2.H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B 74, 165310 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165310
3.
3.Y. Yao, F. Ye, Y.-L. Qi, S.-C. Zhang, and Z. Fang, Phys. Rev. B 75, 041401(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.75.041401
4.
4.B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys. 3, 192 (2007).
http://dx.doi.org/10.1038/nphys544
5.
5.D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. Lett. 103, 146801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.146801
6.
6.W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nano 9, 794 (2014).
http://dx.doi.org/10.1038/nnano.2014.214
7.
7.N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. Van Wees, Nature 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
8.
8.C. Józsa, T. Maassen, M. Popinciuc, P. J. Zomer, A. Veligura, H. T. Jonkman, and B. J. van Wees, Phys. Rev. B 80, 241403(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.80.241403
9.
9.M. Popinciuc, C. Jozsa, P. J. Zomer, N. Tombros, A. Veligura, H. T. Jonkman, and B. J. van Wees, Phys. Rev. B 80, 214427 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.214427
10.
10.M. Shiraishi, M. Ohishi, R. Nouchi, T. Nozaki, T. Shinjo, and Y. Suzuki, Adv. Funct. Mater. 19, 3711 (2009).
http://dx.doi.org/10.1002/adfm.200900989
11.
11.K. Pi, W. Han, K. M. McCreary, A. G. Swartz, Y. Li, and R. K. Kawakami, Phys. Rev. Lett. 104, 187201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.187201
12.
12.W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami, Phys. Rev. Lett. 105, 167202 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.167202
13.
13.W. Han and R. K. Kawakami, Phys. Rev. Lett. 107, 047207 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.047207
14.
14.W. Han, K. Pi, W. Bao, K. M. McCreary, Y. Li, W. H. Wang, C. N. Lau, and R. K. Kawakami, Appl. Phys. Lett. 94, 222109 (2009).
http://dx.doi.org/10.1063/1.3147203
15.
15.T.-Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S. R. Ali, A. Pachoud, M. Zeng, M. Popinciuc, G. Guntherodt, B. Beschoten, and B. Ozyilmaz, Phys. Rev. Lett. 107, 047206 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.047206
16.
16.M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.1790
17.
17.T. Maassen, I. J. Vera-Marun, M. H. D. Guimarães, and B. J. van Wees, Phys. Rev. B 86, 235408 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235408
18.
18.S. P. Dash, S. Sharma, J. C. Le Breton, J. Peiro, H. Jaffrès, J. M. George, A. Lemaître, and R. Jansen, Phys. Rev. B 84, 054410 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.054410
19.
19.S. Garzon, I. Žutić, and R. A. Webb, Phys. Rev. Lett. 94, 176601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176601
20.
20.J.-H. Park and H.-J. Lee, Phys. Rev. B 89, 165417 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.165417
21.
21.B. Li, L. Chen, and X. Pan, Appl. Phys. Lett. 98, 133111 (2011).
http://dx.doi.org/10.1063/1.3571553
22.
22.F. Volmer, M. Drögeler, E. Maynicke, N. von den Driesch, M. L. Boschen, G. Güntherodt, and B. Beschoten, Phys. Rev. B 88, 161405 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.161405
23.
23.F. Volmer, M. Drögeler, E. Maynicke, N. von den Driesch, M. L. Boschen, G. Güntherodt, C. Stampfer, and B. Beschoten, Phys. Rev. B 90, 165403 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.165403
24.
24.A. Varykhalov, D. Marchenko, J. Sánchez-Barriga, M. R. Scholz, B. Verberck, B. Trauzettel, T. O. Wehling, C. Carbone, and O. Rader, Phys. Rev. X 2, 041017 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.041017
25.
25.A. Varykhalov and O. Rader, Phys. Rev. B 80, 035437 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.035437
26.
26.T. Abtew, B.-C. Shih, S. Banerjee, and P. Zhang, Nanoscale 5, 1902 (2013).
http://dx.doi.org/10.1039/c2nr32972g
27.
27.F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees, Nature 416, 713 (2002).
http://dx.doi.org/10.1038/416713a
28.
28.H. Idzuchi, Y. Fukuma, S. Takahashi, S. Maekawa, and Y. Otani, Phys. Rev. B 89, 081308 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.081308
29.
29.E. Sosenko, H. Wei, and V. Aji, Phys. Rev. B 89, 245436 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.245436
30.
30.H. Idzuchi, A. Fert, and Y. Otani, Phys. Rev. B 91, 241407 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.241407
31.
31.B. Dlubak, P. Seneor, A. Anane, C. Barraud, C. Deranlot, D. Deneuve, B. Servet, R. Mattana, F. Petroff, and A. Fert, Appl. Phys. Lett. 97, 092502 (2010).
http://dx.doi.org/10.1063/1.3476339
32.
32.B. Dlubak, M.-B. Martin, C. Deranlot, K. Bouzehouane, S. Fusil, R. Mattana, F. Petroff, A. Anane, P. Seneor, and A. Fert, Appl. Phys. Lett. 101, 203104 (2012).
http://dx.doi.org/10.1063/1.4765348
33.
33.B. Canto, C. P. Gouvea, B. S. Archanjo, J. E. Schmidt, and D. L. Baptista, Sci. Rep. 5, 14332 (2015).
http://dx.doi.org/10.1038/srep14332
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/3/10.1063/1.4943681
Loading
/content/aip/journal/aplmater/4/3/10.1063/1.4943681
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/3/10.1063/1.4943681
2016-03-15
2016-12-07

Abstract

We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields), and bulk spin relaxation for graphenespin valves with MgO barriers, AlO barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for AlO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/3/1.4943681.html;jsessionid=xjW-rqv6-qVGH8pxG39rQjii.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/3/10.1063/1.4943681&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/3/10.1063/1.4943681&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/3/10.1063/1.4943681'
Top,Right1,Right2,Right3,