Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/3/10.1063/1.4943990
1.
1.F. Matsukura, Y. Tokura, and H. Ohno, Nat. Nanotechnol. 10, 209 (2015).
http://dx.doi.org/10.1038/nnano.2015.22
2.
2.H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).
http://dx.doi.org/10.1038/35050040
3.
3.H. Ohno, Nat. Mater. 9, 952 (2010).
http://dx.doi.org/10.1038/nmat2913
4.
4.T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nat. Nanotech. 4, 158 (2009).
http://dx.doi.org/10.1038/nnano.2008.406
5.
5.C. Bi, Y. Liu, T. Newhouse-Illige, M. Xu, M. Rosales, J. W. Freeland, O. Mryasov, S. Zhang, S. G. E. Te Velthuis, and W. Wang, Phys. Rev. Lett. 113, 267202 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.267202
6.
6.U. Bauer, L. Yao, A. J. Tan, P. Agrawal, S. Emori, H. L. Tuller, S. van Dijken, and G. S. D. Beach, Nat. Mater. 14, 174 (2015).
http://dx.doi.org/10.1038/nmat4134
7.
7.R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
http://dx.doi.org/10.1038/nmat1805
8.
8.Y. Tokura and J. Magn, Magn. Mater. 310, 1145 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.11.198
9.
9.C. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
http://dx.doi.org/10.1063/1.2836410
10.
10.J. Ma, J. Hu, Z. Li, and C. Nan, Adv. Mater. 23, 1062 (2011).
http://dx.doi.org/10.1002/adma.201003636
11.
11.C. A. F. Vaz, J. Phys.: Condens. Matter 24, 333201 (2012).
http://dx.doi.org/10.1088/0953-8984/24/33/333201
12.
12.W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
13.
13.N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
http://dx.doi.org/10.1126/science.1113357
14.
14.J. T. Heron, J. L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J. D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D. C. Ralph, D. G. Schlom, J. Iniguez, B. D. Huey, and R. Ramesh, Nature 516, 370 (2014).
http://dx.doi.org/10.1038/nature14004
15.
15.J. T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Y. Yang, D. E. Nikonov, Y. Chu, S. Salahuddin, and R. Ramesh, Phys. Rev. Lett. 107, 217202 (2011).
http://dx.doi.org/10.1103/physrevlett.107.217202
16.
16.C. Thiele, K. Doerr, O. Bilani, J. Roedel, and L. Schultz, Phys. Rev. B 75, 054408 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.054408
17.
17.J. Yang, Y. Zhao, H. Tian, L. Luo, H. Zhang, Y. He, and H. Luo, Appl. Phys. Lett. 94, 212504 (2009).
http://dx.doi.org/10.1063/1.3143622
18.
18.T. Wu, A. Bur, P. Zhao, K. P. Mohanchandra, K. Wong, K. L. Wang, C. S. Lynch, and G. P. Carman, Appl. Phys. Lett. 98, 012504 (2011).
http://dx.doi.org/10.1063/1.3534788
19.
19.Q. Chen, J. Yang, Y. Zhao, S. Zhang, J. Wang, M. Zhu, Y. Yu, X. Zhang, Z. Wang, B. Yang, D. Xie, and T. Ren, Appl. Phys. Lett. 98, 172507 (2011).
http://dx.doi.org/10.1063/1.3584025
20.
20.T. Qu, Y. Zhao, P. Yu, H. Zhao, S. Zhang, and L. Yang, Appl. Phys. Lett. 100, 242410 (2012).
http://dx.doi.org/10.1063/1.4729408
21.
21.S. Zhang, Y. Zhao, P. Li, J. Yang, S. Rizwan, J. Zhang, J. Seidel, T. Qu, Y. Yang, Z. Luo, Q. He, T. Zou, Q. Chen, J. Wang, L. Yang, Y. Sun, Y. Wu, X. Xiao, X. Jin, J. Huang, C. Gao, X. Han, and R. Ramesh, Phys. Rev. Lett. 108, 137203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.137203
22.
22.J. Wang, Y. Zhao, C. Fan, X. Sun, S. Rizwan, S. Zhang, P. Li, Z. Lin, Y. Yang, W. Yan, Z. Luo, L. Zou, H. Liu, Q. Chen, X. Zhang, M. Zhu, H. Zhang, J. Cai, X. Han, Z. Cheng, C. Gao, D. Xie, and T. Ren, Appl. Phys. Lett. 102, 102906 (2013).
http://dx.doi.org/10.1063/1.4795518
23.
23.S. Zhang, Y. Zhao, X. Xiao, Y. Wu, S. Rizwan, L. Yang, P. Li, J. Wang, M. Zhu, H. Zhang, X. Jin, and X. Han, Sci. Rep. 4, 3727 (2014).
http://dx.doi.org/10.1038/srep03727
24.
24.Y. S. Chai, S. Kwon, S. H. Chun, I. Kim, B. Jeon, K. H. Kim, and S. Lee, Nat. Commun. 5, 4208 (2014).
http://dx.doi.org/10.1038/ncomms5208
25.
25.Y. Tokunaga, Y. Taguchi, T. Arima, and Y. Tokura, Nat. Phys. 8, 838 (2012).
http://dx.doi.org/10.1038/nphys2405
26.
26.N. X. Sun and G. Srinivasan, SPIN 2, 1240004 (2012).
http://dx.doi.org/10.1142/S2010324712400048
27.
27.S. Fusil, V. Garcia, A. Barthélémy, and M. Bibes, Annu. Rev. Mater. Res. 44, 91 (2014).
http://dx.doi.org/10.1146/annurev-matsci-070813-113315
28.
28.V. Laukhin, V. Skumryev, X. Marti, D. Hrabovsky, F. Sanchez, M. V. Garcia-Cuenca, C. Ferrater, M. Varela, U. Lueders, J. F. Bobo, and J. Fontcuberta, Phys. Rev. Lett. 97, 227201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.227201
29.
29.S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Nat. Mater. 9, 756 (2010).
http://dx.doi.org/10.1038/nmat2803
30.
30.S. M. Wu, S. A. Cybart, D. Yi, J. M. Parker, R. Ramesh, and R. C. Dynes, Phys. Rev. Lett. 110, 067202 (2013).
http://dx.doi.org/10.1103/physrevlett.110.067202
31.
31.H. J. A. Molegraaf, J. Hoffman, C. A. F. Vaz, S. Gariglio, D. van der Marel, C. H. Ahn, and J. Triscone, Adv. Mater. 21, 3470 (2009).
http://dx.doi.org/10.1002/adma.200900278
32.
32.T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, Sci. Rep. 2, 258 (2012).
http://dx.doi.org/10.1038/srep00258
33.
33.S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).
http://dx.doi.org/10.1063/1.365983
34.
34.R. L. Stamps, S. Breitkreutz, J. Akerman, A. V. Chumak, Y. Otani, G. E. W. Bauer, J. Thiele, M. Bowen, S. A. Majetich, M. Klaeui, I. L. Prejbeanu, B. Dieny, N. M. Dempsey, and B. Hillebrands, J. Phys. D: Appl. Phys. 47, 333001 (2014).
http://dx.doi.org/10.1088/0022-3727/47/33/333001
35.
35.W. Tsai, S. Liao, K. Huang, D. Wang, and C. Lai, Appl. Phys. Lett. 103, 252405 (2013).
http://dx.doi.org/10.1063/1.4850575
36.
36.T. Nan, Z. Zhou, M. Liu, X. Yang, Y. Gao, B. A. Assaf, H. Lin, S. Velu, X. Wang, H. Luo, J. Chen, S. Akhtar, E. Hu, R. Rajiv, K. Krishnan, S. Sreedhar, D. Heiman, B. M. Howe, G. J. Brown, and N. X. Sun, Sci. Rep. 4, 3688 (2014).
http://dx.doi.org/10.1038/srep03688
37.
37.S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, Q. He, Y. H. Chu, C. T. Nelson, M. S. Rzchowski, X. Q. Pan, R. Ramesh, L. Q. Chen, and C. B. Eom, Nat. Mater. 9, 309 (2010).
http://dx.doi.org/10.1038/nmat2703
38.
38.L. Yang, Y. Zhao, S. Zhang, P. Li, Y. Gao, Y. Yang, H. Huang, P. Miao, Y. Liu, A. Chen, C. W. Nan, and C. Gao, Sci. Rep. 4, 4591 (2014).
http://dx.doi.org/10.1038/srep04591
39.
39.T. Wu, A. Bur, K. Wong, P. Zhao, C. S. Lynch, P. K. Amiri, K. L. Wang, and G. P. Carman, Appl. Phys. Lett. 98, 262504 (2011).
http://dx.doi.org/10.1063/1.3605571
40.
40.M. Liu, J. Hoffman, J. Wang, J. Zhang, B. Nelson-Cheeseman, and A. Bhattacharya, Sci. Rep. 3, 1876 (2013).
http://dx.doi.org/10.1038/srep03582
41.
41.M. Liu, B. M. Howe, L. Grazulis, K. Mahalingam, T. Nan, N. X. Sun, and G. J. Brown, Adv. Mater. 25, 4886 (2013).
http://dx.doi.org/10.1002/adma.201301989
42.
42.M. Liu, O. Obi, Z. Cai, J. Lou, G. Yang, K. S. Ziemer, and N. X. Sun, J. Appl. Phys. 107, 073916 (2010).
http://dx.doi.org/10.1063/1.3354104
43.
43.R. Mattheis and G. Quednau, J. Magn. Magn. Mater. 205, 143 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00526-0
44.
44.N. A. Pertsev and H. Kohlstedt, Appl. Phys. Lett. 95, 163503 (2009).
http://dx.doi.org/10.1063/1.3253706
45.
45.J. Hu, Z. Li, J. Wang, and C. Nan, J. Appl. Phys. 107, 093912 (2010).
http://dx.doi.org/10.1063/1.3373593
46.
46.J. Hu, Z. Li, L. Chen, and C. Nan, Nat. Commun. 2, 553 (2011).
http://dx.doi.org/10.1038/ncomms1564
47.
47.W. Wang, M. Li, S. Hageman, and C. L. Chien, Nat. Mater. 11, 64 (2012).
http://dx.doi.org/10.1038/nmat3171
48.
48.Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki, Nat. Mater. 11, 39 (2012).
http://dx.doi.org/10.1038/nmat3172
49.
49.P. Li, A. Chen, D. Li, Y. Zhao, S. Zhang, L. Yang, Y. Liu, M. Zhu, H. Zhang, and X. Han, Adv. Mater. 26, 4320 (2014).
http://dx.doi.org/10.1002/adma.201400617
50.
50.X. Han, X. Zhang, Z. Zeng, F. Li, L. Jiang, R. Sharif, and Y. Yao, J. Magn. Magn. Mater. 304, 83 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.01.125
51.
51.S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nat. Mater. 3, 862 (2004).
http://dx.doi.org/10.1038/nmat1256
52.
52.S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
http://dx.doi.org/10.1038/nmat1257
53.
53.S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 93, 082508 (2008).
http://dx.doi.org/10.1063/1.2976435
54.
54.G. A. Lebedev, B. Viala, T. Lafont, D. I. Zakharov, O. Cugat, and J. Delamare, Appl. Phys. Lett. 99, 232502 (2011).
http://dx.doi.org/10.1063/1.3665952
55.
55.M. Liu, J. Lou, S. Li, and N. X. Sun, Adv. Funct. Mater. 21, 2593 (2011).
http://dx.doi.org/10.1002/adfm.201002485
56.
56.A. Chen, Y. Zhao, P. Li, X. Zhang, R. Peng, H. Huang, L. Zou, X. Zheng, S. Zhang, P. Miao, Y. Lu, J. Cai, and C. Nan, Adv. Mater. 28, 363 (2016).
http://dx.doi.org/10.1002/adma.201503176
57.
57.J. Camarero, J. Sort, A. Hoffmann, J. M. Garcia-Martin, B. Dieny, R. Miranda, and J. Nogues, Phys. Rev. Lett. 95, 057204 (2005).
http://dx.doi.org/10.1103/physrevlett.95.057204
58.
58.S. H. Chung, A. Hoffmann, and M. Grimsditch, Phys. Rev. B 71, 214430 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.214430
59.
59.J. Wang, J. Hu, J. Ma, J. Zhang, L. Chen, and C. Nan, Sci. Rep. 4, 7507 (2014).
http://dx.doi.org/10.1038/srep07507
60.
60.R. Peng, J. Wang, J. Hu, L. Chen, and C. Nan, Appl. Phys. Lett. 106, 142901 (2015).
http://dx.doi.org/10.1063/1.4917228
61.
61.M. Buzzi, R. V. Chopdekar, J. L. Hockel, A. Bur, T. Wu, N. Pilet, P. Warnicke, G. P. Carman, L. J. Heyderman, and F. Nolting, Phys. Rev. Lett. 111, 027204 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.027204
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/3/10.1063/1.4943990
Loading
/content/aip/journal/aplmater/4/3/10.1063/1.4943990
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/3/10.1063/1.4943990
2016-03-16
2016-12-02

Abstract

Electrical manipulation of magnetism has been a long sought-after goal to realize energy-efficient spintronics. During the past decade, multiferroicmaterials combining (anti)ferromagnetic and ferroelectric properties are now drawing much attention and many reports have focused on magnetoelectric coupling effect through strain, charge, or exchange bias. This paper gives an overview of recent progress on electrical manipulation of magnetism through strain-mediated magnetoelectric coupling in multiferroicheterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/3/1.4943990.html;jsessionid=FziKDZVI7jEuwkoFsR5Y1_hj.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/3/10.1063/1.4943990&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/3/10.1063/1.4943990&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/3/10.1063/1.4943990'
Top,Right1,Right2,Right3,