Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/3/10.1063/1.4944506
1.
1.D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28, 671 (1976).
http://dx.doi.org/10.1063/1.88617
2.
2.N. Jensen, U. Rau, R. Hausner, S. Uppal, L. Oberbeck, R. Bergmann, and J. Werner, J. Appl. Phys. 87, 2639 (2000).
http://dx.doi.org/10.1063/1.372230
3.
3.L. Chopra, P. D. Paulson, and V. Dutta, Prog. Photovoltaics: Res. Appl. 12, 69 (2004).
http://dx.doi.org/10.1002/pip.541
4.
4.W. Shockley and H. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
5.
5.F. Alharbi, J. D. Bass, A. Salhi, A. Alyamani, H.-C. Kim, and R. D. Miller, Renewable Energy 36, 2753 (2011).
http://dx.doi.org/10.1016/j.renene.2011.03.010
6.
6.R. Galloni, Renewable Energy 8, 400 (1996).
http://dx.doi.org/10.1016/0960-1481(96)88886-0
7.
7.X. Deng, X. Liao, S. Han, H. Povolny, and P. Agarwal, Sol. Energy Mater. Sol. Cells 62, 89 (2000).
http://dx.doi.org/10.1016/S0927-0248(99)00139-7
8.
8.J. L. Murray and A. J. McAlister, Bull. Alloy Phase Diagrams 5, 74 (1984).
http://dx.doi.org/10.1007/BF02868729
9.
9.D. E. Aspnes, A. A. Studna, and E. Kjtnsbron, Phys. Rev. B 29, 768 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.768
10.
10.A. H. El-Naggar and A. M. Bakry, J. Phys.: Condens. Matter 11, 9619 (1999).
http://dx.doi.org/10.1088/0953-8984/11/48/319
11.
11.J. P. Perdew, J. A. Chevary, S. H.Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
12.
12.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
13.
13.G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
14.
14.K. Jarolimek, R. A. de Groot, G. A. de Wijs, and M. Zeman, Phys. Rev. B 79, 155206 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155206
15.
15.A. Slaoui, P. Prathap, and O. Tuzun, “Aluminium induced crystallization: Applications in photovoltaic technologies,” in Metal-Induced Crystallization: Fundamentals and Applications, edited by Z. Wang, L. P. H. Jeurgens, and E. J. Mittemeijer (Pan Stanford Publishing Pte. Ltd., 2015).
16.
16.A. Hadjadj, P. St’ahel, P. Cabarrocas, V. Paret, Y. Bounouth, and J. Martin, J. Appl. Phys. 83, 830 (1998).
http://dx.doi.org/10.1063/1.366764
17.
17.J. Cai, Y. Ishikawa, and K. Wada, Opt. Express 21, 7162 (2013).
http://dx.doi.org/10.1364/OE.21.007162
18.
18.G. Talukder, J. Cowan, D. Brodie, and J. Leslie, Can. J. Phys. 62, 848 (1984).
http://dx.doi.org/10.1139/p84-117
19.
19.S. O’Leary, S. Zukotynski, and J. Perz, J. Non-Cryst. Solids 210, 249 (1997).
http://dx.doi.org/10.1016/S0022-3093(96)00612-6
20.
20.F. Gaspari, “Optoelectronic properties of amorphous silicon the role of Hydrogen: From experiment to modeling,” in Optoelectronics–Materials and Techniques (InTech, 2011).
21.
21.N. P. Harder, A. B. Sproul, T. Brammer, and A. G. Aberle, J. Appl. Phys. 94, 2473 (2003).
http://dx.doi.org/10.1063/1.1595141
22.
22.R. Street, “Introduction,” in Technology and Applications of Amorphous Silicon, edited byR. A. Street (Springer-Verlag, Berlin, Heidelberg, 2000), p. 4.
23.
23.R. Street, “Introduction,” in Cabridge Solid State Science Series, Hydrogenated amorphous Si, edited by R. A. Street (Cambridge University Press, 2000), p. 69.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/3/10.1063/1.4944506
Loading
/content/aip/journal/aplmater/4/3/10.1063/1.4944506
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/3/10.1063/1.4944506
2016-03-18
2016-12-04

Abstract

Thin films of homogeneous mixture of amorphous silicon and aluminum were produced with magnetron sputtering using 2-phase Al–Si targets. The films exhibited variable compositions, with and without the presence of hydrogen, aSiAl and aSiAlH. The structure and optical properties of the films were investigated using transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis spectrometry, ellipsometry, and atomistic modeling. We studied the effect of alloying aSi with Al (within the range 0–25 at. %) on the optical band gap,refractive index, transmission, and absorption. Alloying aSi with Al resulted in a non-transparent film with a low band gap (<1 eV). Hydrogenation of the films increased the band gap to values >1 eV. Variations of the Al and hydrogen content allowed for tuning of the optoelectronic properties. The films are stable up to a temperature of 300 °C. At this temperature, we observed Al induced crystallization of the amorphous silicon and the presence of large Al particles in a crystalline Si matrix.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/3/1.4944506.html;jsessionid=zy_uLYOzGaOXF_jGCMVTsHXM.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/3/10.1063/1.4944506&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/3/10.1063/1.4944506&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/3/10.1063/1.4944506'
Top,Right1,Right2,Right3,