Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.E. J. W. Verwey, Nature 144, 327 (1939).
2.E. J. Verwey, P. W. Haayman, and F. C. Romeijn, J. Chem. Phys. 15, 181 (1947).
3.S. F. Alvarado, W. Eib, F. Meier, D. T. Pierce, K. Sattler, H. C. Siegmann, and J. P. Remeika, Phys. Rev. Lett. 34, 319 (1975).
4.P. Piekarz, K. Parlinski, and A. M. Oleś, Phys. Rev. Lett. 97, 156402 (2006).
5.G. K. Rozenberg, M. P. Pasternak, W. M. Xu, Y. Amiel, M. Hanfland, M. Amboage, and R. Jeanloz, Phys. Rev. Lett. 96, 045705 (2006).
6.J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
7.J. M. Iwata-Harms, R. V. Chopdekar, F. J. Wong, B. B. Nelson-Cheeseman, C. A. Jenkins, E. Arenholz, and Y. Suzuki, Appl. Phys. Lett. 106, 012405 (2015).
8.W. G. Wang, M. Li, S. Hageman, and C. L. Chien, Nat. Mater. 11, 64 (2012).
9.G. Hu and Y. Suzuki, Phys. Rev. Lett. 89, 276601 (2002).
10.L. B. Zhao, W. B. Mi, E. Y. Jiang, and H. L. Bai, Appl. Phys. Lett. 91, 052113 (2007).
11.D. T. Margulies, F. T. Parker, F. E. Spada, R. S. Goldman, J. Li, R. Sinclair, and A. E. Berkowitz, Phys. Rev. B 53, 9175 (1996).
12.D. T. Margulies, F. T. Parker, M. L. Rudee, F. E. Spada, J. N. Chapman, P. R. Aitchison, and A. E. Berkowitz, Phys. Rev. Lett. 79, 5162 (1997).
13.W. Eerenstein, T. Hibma, and S. Celotto, Phys. Rev. B 70, 184404 (2004).
14.K. P. McKenna, F. Hofer, D. Gilks, V. K. Lazarov, C. Chen, Z. Wang, and Y. Ikuhara, Nat. Comm. 5, 5740 (2014).
15.W. Eerenstein, T. T. M. Palstra, S. S. Saxena, and T. Hibma, Phys. Rev. Lett. 88, 247204 (2002).
16.X. Liu, H. Lu, M. He, L. Wang, H. Shi, K. Jin, and G. Yang, J. Phys. D: Appl. Phys. 47, 105004 (2014).
17.S. K. Arora, H. C. Wu, H. Yao, W. Y. Ching, R. J. Choudhary, I. V. Shvets, and O. N. Mryasov, IEEE Trans. Magn. 44, 2628 (2008).
18.S. K. Arora, H. C. Wu, R. J. Choudhary, I. V. Shvets, O. N. Mryasov, H. Yao, and W. Y. Ching, Phys. Rev. B 77, 134443 (2008).
19.J. Orna, P. A. Algarabel, L. Morellón, J. A. Pardo, J. M. de Teresa, R. L. Antón, and A. Wildes, Phys. Rev. B 81, 144420 (2010).
20.U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, and A. Fert, Adv. Mater. 18, 1733 (2006).
21.See supplementary material at for Figure S1 in which we show RHEED patterns for Fe3O4films deposited at different substrate temperatures and the substrate patterns recorded before Fe3O4films were deposited. In Figure S2, we indicate the XRD patterns for the films with thickness of 20 nm grown at different substrate temperatures. In Figure S3, we show the XPS spectrum of Fe 2p of the 20 nm Fe3O4thin films with computer fitted curves deposited at 550 °C and 600 °C. In Figure S4, we show magnetization as a function of temperature for Fe3O4films deposited at different substrate temperatures measured in the presence of a 1 kOe field. In Figure S5, we show the in-plane magnetic hysteresis loops of Fe3O4 films deposited at different substrate temperatures measured at 300 K.[Supplementary Material]
22.A. Hamie, Y. Dumont, E. Popova, A. Fouchet, F. B. Warot, C. Gatel, and N. Keller, Thin Solid Films 525, 115 (2012).
23.Y. Z. Chen, J. R. Sun, Y. N. Han, X. Y. Xie, J. Shen, C. B. Rong, and B. G. Shen, J. Appl. Phys. 103, 07D703 (2008).
24.J. D. Wei, I. Knittel, U. Hartmann, Y. Zhou, S. Murphy, I. V. Shvets, and F. T. Parker, Appl. Phys. Lett. 89, 122517 (2006).
25.Z. Huang, Q. Chen, Y. Zhai, J. Wang, Y. Xu, and B. Wang, Appl. Phys. Lett. 106, 182401 (2015).
26.P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973).
27.H. Liu, E. Y. Jiang, H. L. Bai, R. K. Zheng, and X. X. Zhang, J. Phys. D: Appl. Phys. 36, 2950 (2003).
28.H. Liu, E. Y. Jiang, H. L. Bai, R. K. Zheng, H. L. Wei, and X. X. Zhang, Appl. Phys. Lett. 83, 3531 (2003).
29.P. Sheng, Phys. Rev. B 21, 2180 (1980).
30.W. B. Mi, J. J. Shen, E. Y. Jiang, and H. L. Bai, Acta Mater. 55, 1919 (2007).
31.J. J. Shen, W. B. Mi, Z. Q. Li, P. Wu, E. Y. Jiang, and H. L. Bai, J. Vac. Sci. Technol., A 24, 390 (2006).

Data & Media loading...


Article metrics loading...



The magnetic and transport properties of FeOfilms with a series of thicknesses are investigated. For the films with thickness below 15 nm, the saturation magnetization (M) increases and the coercivity decreases with the decrease in films’ thickness. The M of 3 nm FeOfilm is dramatically increased to 1017 emu/cm3. As for films’ thickness more than 15 nm, M is tending to be close to the FeO bulk value. Furthermore, the Verwey transition temperature (T) is visible for all the films, but suppressed for 3 nm film. We also find that the ρ of 3 nm film is the highest of all the films. The suppressed T and high ρ may be related to the islands morphology in 3 nm film. To study the structure, magnetic, and transport properties of the FeOfilms, we propose that the giant magnetic moment most likely comes from the spin of Fe ions in the tetrahedron site switching parallel to the Fe ions in the octahedron site at the surface, interface, and grain boundaries. The above results are of great significance and also provide a promising future for either device applications or fundamental research.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd