Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. L. Fan, P. C. Chiu, and C. C. Lin, “Low-temperature-deposited SiO2 gate insulator with hydrophobic methyl groups for bottom-contact organic thin-film transistors,” IEEE Electron Device Lett. 31, 1485 (2010).
2.C. L. Fan, Y. Z. Lin, W. D. Lee, S. J. Wang, and C. H. Huang, “Improved pentacene growth continuity for enhancing the performance of pentacene-based organic thin-film transistors,” Org. Electron. 13, 2924 (2012).
3.C. Y. Wei, F. Adriyanto, Y. J. Lin, Y. C. Li, T. J. Huang, D. W. Chou, and Y. H. Wang, “Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator,” IEEE Electron Device Lett. 30, 1039 (2009).
4.S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance,” Appl. Phys. Lett. 88, 162109 (2006).
5.Y. H. Noh, S. Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Org. Electron. 7, 271 (2006).
6.G. Gu and M. G. Kane, “Moisture induced electron traps and hysteresis in pentacene based organic thin-film transistors,” Appl. Phys. Lett. 92, 053305 (2008).
7.T. H. Kim, C. G. Han, and C. K. Song, “Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric,” Thin Solid Films 516, 1232 (2008).
8.T. Umeda, D. Kumaki, and S. Tokito, “High air stability of threshold voltage on gate bias stress in pentacene TFTs with a hydroxyl-free and amorphous fluoropolymer as gate insulators,” Org. Electron. 9, 545 (2008).
9.X. Cheng, M. Caironi, Y. Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, “Air stable cross-linked cytop ultrathin gate dielectric for high yield low-voltage top-gate organic field-effect transistors,” Chem. Mater. 22, 1559 (2010).
10.S. H. Kim, J. Jang, H. Jeon, W. M. Yun, S. Nam, and C. E. Park, “Hysteresis-free pentacene field-effect transistors and inverters containing poly(4-vinyl phenol-co-methyl methacrylate) gate dielectrics,” Appl. Phys. Lett. 92, 183306 (2008).
11.L. Jiang, J. Zhang, D. Gamota, and C. G. Takoudis, “Organic thin film transistors with novel thermally cross-linked dielectric and printed electrodes on flexible substrates,” Org. Electron. 11, 959 (2010).
12.H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” J. Appl. Phys. 92, 5259 (2002).
13.P. Liu, Y. Wu, Y. Li, B. S. Ong, and S. Zhu, “Enabling gate dielectric design for all solution-processed, high-performance, flexible organic thin-film transistors,” J. Am. Chem. Soc. 128, 4554 (2006).
14.S. Mototani, S. Ochiai, X. Wang, K. Kojima, A. Ohashi, and T. Mizutani, “Performance of organic field-effect transistors with poly(3-hexylthiophene) as the semiconductor layer and poly(4-vinylphenol) thin film untreated and treated by hexamethyldisilazane as the gate insulator,” Jpn. J. Appl. Phys. 47, 496 (2008).
15.J. Jang, S. H. Kim, S. Nam, D. S. Chung, C. Yang, W. M. Yun, C. E. Park, and J. B. Koo, “Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl cinnamate) as a gate dielectric,” Appl. Phys. Lett. 92, 143306 (2008).
16.S. De Vusser, J. Genoe, and P. Heremans, “Influence of transistor parameters on the noise margin of organic digital circuits,” IEEE Electron Device 53, 601 (2006).
17.S. Steudel, S. De Vusser, K. Myny, M. Lenes, J. Genoe, and P. Heremans, “Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags,” J. Appl. Phys. 99, 114519 (2006).
18.H. L. Hortensius, A. Öztürk, P. Zeng, E. F. C. Driessen, and T. M. Klapwijk, “Microwave-induced nonequilibrium temperature in a suspended carbon nanotube,” Appl. Phys. Lett. 100, 223112 (2012).
19.L. F. Teng, P. T. Liu, Y. J. Lo, and Y. J. Lee, “Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor,” Appl. Phys. Lett. 101, 132901 (2012).
20.C. S. Fuh, P. T. Liu, L. F. Teng, S. W. Hung, Y. J. Lee, and H. P. D. Shieh, “Effects of microwave annealing on nitrogenated amorphous in-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Lett. 34, 1157 (2013).
21.C. L. Fan, Y. Z. Lin, and C. H. Hung, “Combined scheme of UV/ozone and HMDS treatment on a gate insulator for performance improvement of a low-temperature-processed bottom-contact OTFT,” Semicond. Sci. Technol. 26, 045006 (2011).

Data & Media loading...


Article metrics loading...



A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd