Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Li, J. Eastman, Z. Li, C. Foster, R. Newnham, and L. Cross, Phys. Lett. A 212, 341 (1996).
2.S. Li, J. A. Eastman, J. M. Vetrone, C. M. Foster, R. E. Newnham, and L. E. Cross, Jpn. J. Appl. Phys., Part 1 36, 5169 (1997).
3.L.-H. Ong, J. Osman, and D. R. Tilley, Phys. Rev. B 63, 144109 (2001).
4.E. D. Specht, H.-M. Christen, D. P. Norton, and L. A. Boatner, Phys. Rev. Lett. 80, 4317 (1998).
5.D. Tilley and B. Žekš, Solid State Commun. 49, 823 (1984).
6.M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
7.R. Kretschmer and K. Binder, Phys. Rev. B 20, 1065 (1979).
8.J. F. Scott, J. Phys.: Condens. Matter 18, R361 (2006).
9.C. Kittel, Phys. Rev. 70, 965 (1946).
10.H.-M. Christen, E. D. Specht, D. P. Norton, M. F. Chisholm, and L. A. Boatner, Appl. Phys. Lett. 72, 2535 (1998).
11.C. L. Wang and S. R. P. Smith, J. Phys.: Condens. Matter 7, 7163 (1995).
12.S. C. Jain, A. H. Harker, and R. A. Cowley, Philos. Mag. A 75, 1461 (1997).
13.G. Catalan, B. Noheda, J. McAneney, L. J. Sinnamon, and J. M. Gregg, Phys. Rev. B 72, 020102 (2005).
14.S. H. Chang, Y. J. Chang, S. Y. Jang, D. W. Jeong, C. U. Jung, Y.-J. Kim, J.-S. Chung, and T. W. Noh, Phys. Rev. B 84, 104101 (2011).
15.J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 105, 227203 (2010).
16.Y. Yang, C. M. Schlepütz, C. Adamo, D. G. Schlom, and R. Clarke, APL Mater. 1, 052102 (2013).
17.J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. Waghmare, N. A. Spaldin, K. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
18.W. Siemons, G. J. MacDougall, A. A. Aczel, J. L. Zarestky, M. D. Biegalski, S. Liang, E. Dagotto, S. E. Nagler, and H. M. Christen, Appl. Phys. Lett. 101, 212901 (2012).
19.W. Siemons, C. Beekman, G. J. MacDougall, J. L. Zarestky, S. E. Nagler, and H. M. Christen, J. Phys. D: Appl. Phys. 47, 034011 (2014).
20.C. Beekman, W. Siemons, T. Z. Ward, M. Chi, J. Howe, M. D. Biegalski, N. Balke, P. Maksymovych, A. K. Farrar, J. B. Romero, P. Gao, X. Q. Pan, D. A. Tenne, and H. M. Christen, Adv. Mater. 25, 5561 (2013).
21.H. Christen, J. Nam, H. Kim, A. Hatt, and N. Spaldin, Phys. Rev. B 83, 144107 (2011).
22.W. Siemons, M. D. Biegalski, J. H. Nam, and H. M. Christen, Appl. Phys. Express 4, 095801 (2011).
23.See supplementary material at for additional atomic force microscopy data, x-ray scattering data including reciprocal space maps, and schematic drawings.[Supplementary Material]
24.K. Saito, A. Ulyanenkov, V. Grossmann, H. Ress, L. Bruegemann, H. Ohta, T. Kurosawa, S. Ueki, and H. Funakubo, Jpn. J. Appl. Phys., Part 1 45, 7311 (2006).
25.C. Beekman, W. Siemons, T. Z. Ward, J. D. Budai, J. Z. Tischler, R. Xu, W. Liu, N. Balke, J. H. Nam, and H. M. Christen, Appl. Phys. Lett. 102, 221910 (2013).
26.H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, and A. Barthélémy, Phys. Rev. Lett. 102, 217603 (2009).
27.Z. Chen, Z. Luo, C. Huang, Y. Qi, P. Yang, L. You, C. Hu, T. Wu, J. Wang, C. Gao, T. Sritharan, and L. Chen, Adv. Funct. Mater. 21, 133 (2011).
28.M. D. Glinchuk, E. A. Eliseev, V. A. Stephanovich, M. G. Karkut, R. Farhi, and L. Jastrabik, Integr. Ferroelectr. 38, 143 (2001).
29.C. W. Huang, Z. H. Chen, and L. Chen, J. Appl. Phys. 113, 094101 (2013).
30.T. Mitsui and J. Furuichi, Phys. Rev. 90, 193 (1953).
31.A. Morozovska, E. Eliseev, J. Wang, G. Svechnikov, Y. Vysochanskii, V. Gopalan, and L.-Q. Chen, Phys. Rev. B 81, 195437 (2010).
32.Physics of Ferroelectrics, edited by K. M. Rabe, C. H. Ahn, and J.-M. Triscone (Springer-Verlag Berlin Heidelberg, 2007).
33.S. K. Streiffer, J. A. Eastman, D. D. Fong, C. Thompson, A. Munkholm, M. V. Ramana Murty, O. Auciello, G. R. Bai, and G. B. Stephenson, Phys. Rev. Lett. 89, 067601 (2002).
34.Y. G. Wang, W. L. Zhong, and P. L. Zhang, Phys. Rev. B 51, 5311 (1995).
35.X. Y. Zhou, D. Y. Wang, R. K. Zheng, H. Y. Tian, J. Q. Qi, H. L. W. Chan, C. L. Choy, and Y. Wang, Appl. Phys. Lett. 90, 132902 (2007).
36.D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Science 304, 1650 (2004).
37.C. Beekman, W. Siemons, M. Chi, N. Balke, T. Z. Ward, P. Maksymovych, J. D. Budai, J. Z. Tischler, R. Xu, W. Liu, and H. M. Christen, “Ferroelectric self-poling, switching and crystallinity in BiFeO3 thin films” (unpublished).
38.P. Yu, J.-S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C.-H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y.-H. Chu, D. A. Arena, C.-C. Kao, L. W. Martin, and R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010).
39.J. X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y.-H. Chu, and R. Ramesh, Phys. Rev. Lett. 107, 147602 (2011).
40.J. M. Rondinelli, S. J. May, and J. W. Freeland, Mater. Res. Soc. Bull. 37, 261 (2012).
41.H. Dixit, C. Beekman, C. M. Schlepütz, W. Siemons, Y. Yang, N. Senabulya, R. Clarke, M. Chi, H. M. Christen, and V. R. Cooper, Adv. Sci. 2, 1500041 (2015).
42.F. Pailloux, M. Couillard, S. Fusil, F. Bruno, W. Saidi, V. Garcia, C. Carrétéro, E. Jacquet, M. Bibes, A. Barthélémy, G. A. Botton, and J. Pacaud, Phys. Rev. B 89, 104106 (2014).
43.R. Huang, H.-C. Ding, W.-I. Liang, Y.-C. Gao, X.-D. Tang, Q. He, C.-G. Duan, Z. Zhu, J. Chu, C. A. J. Fisher, T. Hirayama, Y. Ikuhara, and Y.-H. Chu, Adv. Funct. Mater. 24, 793 (2014).
44.A. M. Glazer, Acta Crystallogr., Sect. A 31, 756 (1975).

Data & Media loading...


Article metrics loading...



Two structuralphase transitions are investigated in highly strained BiFeO thin films as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transitiontemperatures (upon heating: monoclinic M to monoclinic M to tetragonal) decrease as the film becomes thinner. A film-substrate interface layer, evidenced by half-order peaks, contributes to this behavior, but at larger thicknesses (above a few nanometers), the temperature dependence results from electrostatic considerations akin to size effects in ferroelectric phase transitions, but observed here for structuralphase transitions within the ferroelectric phase. For ultra-thin films, the tetragonal structure is stable to low temperatures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd