Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Y. Xu, Y. N. Guo, Y. Wang, J. Zou, J. H. Kang, Q. Gao, H. H. Tan, and C. Jagadish, J. Appl. Phys. 106, 083514 (2009).
2.S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, J. Appl. Phys. 68, R31 (1990).
3.R. Fischer, H. Morkoç, D. A. Neumann, H. Zabel, C. Choi, N. Otsuka, M. Longerbone, and L. P. Erickson, J. Appl. Phys. 60, 1640 (1986).
4.X. Li, Y. Cao, D. C. Hall, P. Fay, B. Han, A. Wibowo, and N. Pan, IEEE Electron Device Lett. 25, 772 (2004).
5.Y. Cao, X. Li, J. Zhang, P. Fay, T. H. Kosel, and D. C. Hall, IEEE Electron Device Lett. 27, 317 (2006).
6.A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, Y. M. Shernyakov, S. S. Mikhrin, N. A. Maleev, E. Y. Kondrat’eva, D. A. Livshits, M. V. Maximov, B. V. Volovik, D. A. Bedarev, Y. G. Musikhin, N. N. Ledentsov, P. S. Kop’ev, Z. I. Alferov, and D. Bimberg, IEEE Electron Device Lett. 11, 1345 (1999).
7.W. Q. Li, P. K. Bhattacharya, S. H. Kwok, and R. Merlin, J. Appl. Phys. 72, 3129 (1992).
8.W. Y. Uen, Z. Y. Li, Y. C. Huang, M. C. Chen, T. N. Yang, S. M. Lan, C. H. Wu, H. F. Hong, and G. C. Chi, J. Cryst. Growth 295, 103 (2006).
9.W. Jun, H. H. Yang, D. Can, H. Y. Rui, W. Qi, D. X. Feng, H. Y. Qing, and R. X. Min, Chin. Phys. B 24, 028101 (2015).
10.C. W. Hsu, Y. F. Chen, and Y. K. Su, Nanotechnology 23, 495306 (2012).
11.J. Z. Li, J. Bai, C. Major, M. Carroll, A. Lochtefeld, and Z. Shellenbarger, J. Appl. Phys. 103, 106102 (2008).
12.R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J. P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X. Y. Bao, Z. Ye, J. B. Pin, and E. Sanchez, Appl. Phys. Lett. 104, 262103 (2014).
13.S. M. Ting and E. A. Fitzgerald, J. Appl. Phys. 87, 2618 (2000).
14.M. Akiyama, Y. Kawarada, and K. Kaminishi, J. Cryst. Growth 68, 21 (1984).
15.M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, and K. Kaminishi, J. Cryst. Growth 77, 490 (1986).
16.Y.-R. Luo, Bond Dissociation Energies (CRC Press, South Florida, 2003), p. 65.
17.I. Németh, B. Kunert, W. Stolz, and K. Volz, J. Cryst. Growth 310, 1595 (2008).
18.Y. Yanase, H. Horie, Y. Oka, M. Sano, S. Sumita, and T. Shigematsu, J. Electrochem. Soc. 141, 3259 (1994).
19.L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, H. Saito, J. Matsushita, and J. Yoshikawa, Phys. Rev. B 54, R2304 (1996).
20.C. L. Wang, S. Unnikrishnan, B. Y. Kim, D. L. Kwong, and A. F. Tasch, Appl. Phys. Lett. 68, 108 (1996).
21.O. Vatel, S. Verhaverbeke, H. Bender, M. Caymax, F. Chollet, B. Vermeire, P. Mertens, E. Andre, and M. Heyns, Jpn. J. Appl. Phys., Part 1 32, 1489 (1993).
22.H. Bender, S. Verhaverbeke, M. Caymax, O. Vatel, and M. M. Heyns, J. Appl. Phys. 75, 1207 (1994).
23.A. R. Laracuente and L. J. Whitman, Surf. Sci. 476, L247 (2001).
24.H. Döscher, P. Kleinschmidt, and T. Hannappel, Appl. Surf. Sci. 257, 574 (2010).
25.H. Döscher, A. Dobrich, S. Brückner, P. Kleinschmidt, and T. Hannappel, Appl. Phys. Lett. 97, 151905 (2010).
26.S. Brückner, H. Döscher, P. Kleinschmidt, and T. Hannappel, Appl. Phys. Lett. 98, 211909 (2011).
27.H. Döscher, S. Brückner, A. Dobrich, C. Höhn, P. Kleinschmidt, and T. Hannappel, J. Cryst. Growth 315, 10 (2011).
28.S. Brückner, H. Döscher, P. Kleinschmidt, O. Supplie, A. Dobrich, and T. Hannappel, Phys. Rev. B 86, 195310 (2012).
29.H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, Appl. Phys. Lett. 99, 171908 (2011).
30.Z. Xuliang, P. Jiaoqing, L. Renrong, W. Jing, and W. Wei, J. Semicond. 35, 073002 (2014).
31.A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, J. Appl. Phys. 109, 083529 (2011).
32.K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, J. Cryst. Growth 315, 37 (2011).
33.M. Tachikawa and M. Yamaguchi, Appl. Phys. Lett. 56, 484 (1990).
34.G. Borghs, K. Bhattacharyya, K. Deneffe, P. Van Mieghem, and R. Mertens, J. Appl. Phys. 66, 4381 (1989).
35.M. K. Hudait, P. Modak, and S. B. Krupanidhi, Mater. Sci. Eng., B 56, 1 (1999).
36.P. R. Hageman, M. H. J. M. de Croon, J. N. H. Reek, and L. J. Giling, J. Cryst. Growth 116, 169 (1992).
37.S. M. Sze and J. C. Irvin, Solid-State Electron. 11, 599 (1968).
38.M. Akiyama, Y. Kawarada, and K. Kaminishi, Jpn. J. Appl. Phys., Part 2 23, L843 (1984).
39.S. S. Li and W. Robert Thurber, Solid-State Electron. 20, 609 (1977).

Data & Media loading...


Article metrics loading...



Metal organic chemical vapor deposition of GaAs on standard nominal 300 mm Si(001) wafers was studied. Antiphase boundary (APB) free epitaxialGaAs films as thin as 150 nm were obtained. The APB-free films exhibit an improvement of the room temperature photoluminescence signal with an increase of the intensity of almost a factor 2.5. Hall effect measurements show an electron mobility enhancement from 200 to 2000 cm2/V s. The GaAs layers directly grown on industrial platform with no APBs are perfect candidates for being integrated as active layers for nanoelectronic as well as optoelectronic devices in a CMOS environment.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd