Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/4/10.1063/1.4945587
1.
1.A. C. Ferrari, F. Bonaccorso, V. Falko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, C. Galiotis, A. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, C. W. J. Beenakker, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J. H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, and J. Kinaret, Nanoscale 7, 4598 (2014).
http://dx.doi.org/10.1039/c4nr01600a
2.
2.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666 (2004).
http://dx.doi.org/10.1126/science.1102896
3.
3.K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146(9-10), 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
4.
4.R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320(5881), 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
5.
5.C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321(5887), 385 (2008).
http://dx.doi.org/10.1126/science.1157996
6.
6.O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, and J. Keinonen, Nanotechnology 22(17), 175306 (2011).
http://dx.doi.org/10.1088/0957-4484/22/17/175306
7.
7.C.-T. Chen, E. A. Casu, M. Gajek, and S. Raoux, Appl. Phys. Lett. 103(3), 033109 (2013).
http://dx.doi.org/10.1063/1.4813911
8.
8.X. P. Qiu, Y. J. Shin, J. Niu, N. Kulothungasagaran, G. Kalon, C. Qiu, T. Yu, and H. Yang, AIP Adv. 2(3), 032121 (2012).
http://dx.doi.org/10.1063/1.4739783
9.
9.G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, and E. Rimini, Carbon 47(14), 3201 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.07.033
10.
10.O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen, K. Nordlund, and J. Keinonen, Phys. Rev. B 81(15), 153401 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.153401
11.
11.N. A. Vinogradov, K. Schulte, M. L. Ng, A. Mikkelsen, E. Lundgren, N. Mårtensson, and A. B. Preobrajenski, J. Phys. Chem. C 115(19), 9568 (2011).
http://dx.doi.org/10.1021/jp111962k
12.
12.P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469(7330), 389 (2011).
http://dx.doi.org/10.1038/nature09718
13.
13.M. Hinnemo, P. Ahlberg, C. Hägglund, W. Ren, H.-M. Cheng, S.-L. Zhang, and Z.-B. Zhang, Carbon 98, 567 (2016).
http://dx.doi.org/10.1016/j.carbon.2015.11.043
14.
14.L. G. Cançado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett. 11(8), 3190 (2011).
http://dx.doi.org/10.1021/nl201432g
15.
15.M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, Carbon 48(5), 1592 (2010).
http://dx.doi.org/10.1016/j.carbon.2009.12.057
16.
16.A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8(4), 235 (2013).
http://dx.doi.org/10.1038/nnano.2013.46
17.
17.A. C. Ferrari and J. Robertson, Phys. Rev. B 61(20), 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
18.
18.A. C. Ferrari and J. Robertson, Phys. Rev. B 64(7), 075414 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.075414
19.
19.J. Ado, M. Lucchese Marcia, S. Fernando, H. Martins Ferreira Erlon, V. O. Moutinho Marcus, B. Capaz Rodrigo, and A. Achete Carlos, J. Phys.: Condens. Matter 22(33), 334204 (2010).
http://dx.doi.org/10.1088/0953-8984/22/33/334204
20.
20.A. Merrill, C. D. Cress, J. E. Rossi, N. D. Cox, and B. J. Landi, Phys. Rev. B 92(7), 075404 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.075404
21.
21.C. Ophus, A. Shekhawat, H. Rasool, and A. Zettl, Phys. Rev. B 92(20), 205402 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.205402
22.
22.F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5(1), 26 (2011).
http://dx.doi.org/10.1021/nn102598m
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/4/10.1063/1.4945587
Loading
/content/aip/journal/aplmater/4/4/10.1063/1.4945587
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/4/10.1063/1.4945587
2016-04-12
2016-09-27

Abstract

This letter reports on a systematic investigation of sputter induced damage in graphene caused by low energy Ar+ ion bombardment. The integral numbers of ions per area (dose) as well as their energies are varied in the range of a few eV’s up to 200 eV. The defects in the graphene are correlated to the dose/energy and different mechanisms for the defect formation are presented. The energetic bombardment associated with the conventional sputter deposition process is typically in the investigated energy range. However, during sputter deposition on graphene, the energetic particle bombardment potentially disrupts the crystallinity and consequently deteriorates its properties. One purpose with the present study is therefore to demonstrate the limits and possibilities with sputter deposition of thin films on graphene and to identify energy levels necessary to obtain defect free graphene during the sputter deposition process. Another purpose is to disclose the fundamental mechanisms responsible for defect formation in graphene for the studied energy range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/4/1.4945587.html;jsessionid=lquMpiCmQUnQiR-3XxdVzXMW.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/4/10.1063/1.4945587&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/4/10.1063/1.4945587&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/4/10.1063/1.4945587'
Top,Right1,Right2,Right3,