Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/4/10.1063/1.4945657
1.
1.D. D. Awschalom and M. E. Flatte, Nat. Phys. 3, 153 (2007).
http://dx.doi.org/10.1038/nphys551
2.
2.H. Ohno, Science 281, 951 (1998).
http://dx.doi.org/10.1126/science.281.5379.951
3.
3.T. Dietl, Nat. Mater. 9, 965 (2010).
http://dx.doi.org/10.1038/nmat2898
4.
4.T. Nie, J. Tang, and K. L. Wang, J. Cryst. Growth 425, 279 (2015).
http://dx.doi.org/10.1016/j.jcrysgro.2015.01.025
5.
5.A. Bonanni and T. Dietl, Chem. Soc. Rev. 39, 528 (2010).
http://dx.doi.org/10.1039/B905352M
6.
6.S. Cho, S. Choi, S. C. Hong, Y. Kim, J. B. Ketterson, B.-J. Kim, Y. C. Kim, and J.-H. Jung, Phys. Rev. B 66, 033303 (2002).
http://dx.doi.org/10.1103/physrevb.66.033303
7.
7.N. Pinto, L. Morresi, M. Ficcadenti, R. Murri, F. D’Orazio, F. Lucari, L. Boarino, and G. Amato, Phys. Rev. B 72, 165203 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.165203
8.
8.S. Ahlers, D. Bougeard, N. Sircar, G. Abstreiter, A. Trampert, M. Opel, and R. Gross, Phys. Rev. B 74, 214411 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.214411
9.
9.Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002).
http://dx.doi.org/10.1126/science.1066348
10.
10.Y. D. Park, A. Wilson, A. T. Hanbicki, J. E. Mattson, T. Ambrose, G. Spanos, and B. T. Jonker, Appl. Phys. Lett. 78, 2739 (2001).
http://dx.doi.org/10.1063/1.1369151
11.
11.Y. Wang, J. Zou, Z. Zhao, X. Han, X. Zhou, and K. L. Wang, J. Appl. Phys. 103, 066104 (2008).
http://dx.doi.org/10.1063/1.2875110
12.
12.Y. Wang, J. Zou, Z. Zhao, X. Han, X. Zhou, and K. L. Wang, Appl. Phys. Lett. 92, 101913 (2008).
http://dx.doi.org/10.1063/1.2884527
13.
13.D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature 455, 515 (2008).
http://dx.doi.org/10.1038/nature07318
14.
14.T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
15.
15.Y. Faxian Xiu, J. Kim, A. Hong, J. Tang, A. P. Jacob, J. Zou, and K. L. Wang, Nat. Mater. 9, 337 (2010).
http://dx.doi.org/10.1038/nmat2716
16.
16.K. L. Wang and F. Xiu, Thin Solid Films 518, S104 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.10.066
17.
17.S. Sapra, D. D. Sarma, S. Sanvito, and N. A. Hill, Nano Lett. 2, 605 (2002).
http://dx.doi.org/10.1021/nl025516q
18.
18.M. I. v. d. Meulen, N. Petkov, M. A. Morris, O. Kazakova, X. Han, K. L. Wang, A. P. Jacob, and J. D. Holmes, Nano Lett. 9, 50 (2009).
http://dx.doi.org/10.1021/nl802114x
19.
19.A. Šiušys, J. Sadowski, M. Sawicki, S. Kret, T. Wojciechowski, K. Gas, W. Szuszkiewicz, A. Kaminska, and T. Story, Nano Lett. 14, 4263 (2014).
http://dx.doi.org/10.1021/nl500896d
20.
20.J. Tang, T. Nie, and K. L. Wang, ECS Trans. 64, 613 (2014).
http://dx.doi.org/10.1149/06406.0613ecst
21.
21.J. Kassim, C. Nolph, M. Jamet, P. Reinke, and J. Floro, Appl. Phys. Lett. 101, 242407 (2012).
http://dx.doi.org/10.1063/1.4770384
22.
22.J. Kassim, C. Nolph, M. Jamet, P. Reinke, and J. Floro, J. Appl. Phys. 113, 073910 (2013).
http://dx.doi.org/10.1063/1.4792221
23.
23.I. T. Yoon, J. Supercond. Novel Magn. 23, 319 (2009).
http://dx.doi.org/10.1007/s10948-009-0532-3
24.
24.I. T. Yoon, C. J. Park, and T. W. Kang, J. Supercond. Novel Magn. 23, 115 (2009).
http://dx.doi.org/10.1007/s10948-009-0554-x
25.
25.S. W. Lee, L. J. Chen, P. S. Chen, M. J. Tsai, C. W. Liu, T. Y. Chien, and C. T. Chia, Appl. Phys. Lett. 83, 5283 (2003).
http://dx.doi.org/10.1063/1.1635073
26.
26.G. Katsaros, M. Stoffel, A. Rastelli, O. G. Schmidt, K. Kern, and J. Tersoff, Appl. Phys. Lett. 91, 013112 (2007).
http://dx.doi.org/10.1063/1.2752730
27.
27.M. Stoffel, A. Malachias, A. Rastelli, T. H. Metzger, and O. G. Schmidt, Appl. Phys. Lett. 94, 253114 (2009).
http://dx.doi.org/10.1063/1.3152269
28.
28.G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science 279, 353 (1998).
http://dx.doi.org/10.1126/science.279.5349.353
29.
29.H. Yang, Z. Tao, J. Lin, F. Lu, Z. Jiang, and Z. Zhong, Appl. Phys. Lett. 92, 111907 (2008).
http://dx.doi.org/10.1063/1.2901873
30.
30.A. Stroppa, S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 68, 155203 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.155203
31.
31.M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko, Nat. Mater. 5, 653 (2006).
http://dx.doi.org/10.1038/nmat1686
32.
32.T. Devillers, M. Jamet, A. Barski, V. Poydenot, P. Bayle-Guillemaud, E. Bellet-Amalric, S. Cherifi, and J. Cibert, Phys. Rev. B 76, 205306 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205306
33.
33.C. Bihler, C. Jaeger, T. Vallaitis, M. Gjukic, M. S. Brandt, E. Pippel, J. Woltersdorf, and U. Gösele, Appl. Phys. Lett. 88, 112506 (2006).
http://dx.doi.org/10.1063/1.2185448
34.
34.F. Xiu, Y. Wang, K. Wong, Y. Zhou, X. Kou, J. Zou, and K. L. Wang, Nanotechnology 21, 255602 (2010).
http://dx.doi.org/10.1088/0957-4484/21/25/255602
35.
35.P. F. Fewster, Crit. Rev. Solid State Mater. Sci. 22, 66 (1997).
http://dx.doi.org/10.1080/10408439708241259
36.
36.Z. M. Jiang, X. M. Jiang, W. R. Jiang, Q. J. Jia, W. L. Zheng, and D. C. Qian, Appl. Phys. Lett. 76, 3397 (2000).
http://dx.doi.org/10.1063/1.126658
37.
37.D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1943
38.
38.A. J. R. Da Silva, A. Fazzio, and A. Antonelli, Phys. Rev. B 70, 193205 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.193205
39.
39.M. Shaughnessy, C. Y. Fong, R. Snow, L. H. Yang, X. S. Chen, and Z. M. Jiang, Phys. Rev. B 82, 035202 (2010).
http://dx.doi.org/10.1103/physrevb.82.035202
40.
40.L. Zeng, J. X. Cao, E. Helgren, J. Karel, E. Arenholz, L. Ouyang, D. J. Smith, R. Q. Wu, and F. Hellman, Phys. Rev. B 82, 165202 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165202
41.
41.J. T. Arantes, A. J. R. da Silva, A. Fazzio, and A. Antonelli, Phys. Rev. B 75, 075316 (2007).
http://dx.doi.org/10.1103/physrevb.75.075316
42.
42.M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).
http://dx.doi.org/10.1103/physrevb.48.14276
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/4/10.1063/1.4945657
Loading
/content/aip/journal/aplmater/4/4/10.1063/1.4945657
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/4/10.1063/1.4945657
2016-04-07
2016-12-03

Abstract

MnGequantum dots(QDs) samples were grown by molecular beam epitaxy on Si substrates and 15-nm-thick fully strained SiGe virtual substrates, respectively. The QDs samples grown on the SiGe virtual substrates show a significant ferromagnetism with a Curie temperature of 227 K, while the QDs samples grown on the Si substrates are non-ferromagnetic. Microstructures of the QDs samples were characterized by high resolution transmission electron microscopy and synchrotron radiation X-ray diffraction. Interdependence between microstructure and ferromagnetism of Mn-doped GeQDs was investigated. For the QDs sample grown on the strained SiGe virtual substrate, although the ferromagnetic phase MnGe clusters were found to be formed in small dome-shaped dots, the significant ferromagnetism observed in that sample is attributed to ferromagnetic phase Mn-doped large dome-shaped GeQDs, rather than to the ferromagnetic phase MnGe clusters. The fully strained SiGe virtual substrates would result in a residual strain into the QDs and an increase in Ge composition in the QDs. Both consequences favor the formations of ferromagnetic phase Mn-doped GeQDs from points of view of quantum confinement effect as well as Mn doping at substitutional sites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/4/1.4945657.html;jsessionid=mjksSiygkC_INuDgCYfVj0lk.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/4/10.1063/1.4945657&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/4/10.1063/1.4945657&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/4/10.1063/1.4945657'
Top,Right1,Right2,Right3,