Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. D. Awschalom and M. E. Flatte, Nat. Phys. 3, 153 (2007).
2.H. Ohno, Science 281, 951 (1998).
3.T. Dietl, Nat. Mater. 9, 965 (2010).
4.T. Nie, J. Tang, and K. L. Wang, J. Cryst. Growth 425, 279 (2015).
5.A. Bonanni and T. Dietl, Chem. Soc. Rev. 39, 528 (2010).
6.S. Cho, S. Choi, S. C. Hong, Y. Kim, J. B. Ketterson, B.-J. Kim, Y. C. Kim, and J.-H. Jung, Phys. Rev. B 66, 033303 (2002).
7.N. Pinto, L. Morresi, M. Ficcadenti, R. Murri, F. D’Orazio, F. Lucari, L. Boarino, and G. Amato, Phys. Rev. B 72, 165203 (2005).
8.S. Ahlers, D. Bougeard, N. Sircar, G. Abstreiter, A. Trampert, M. Opel, and R. Gross, Phys. Rev. B 74, 214411 (2006).
9.Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002).
10.Y. D. Park, A. Wilson, A. T. Hanbicki, J. E. Mattson, T. Ambrose, G. Spanos, and B. T. Jonker, Appl. Phys. Lett. 78, 2739 (2001).
11.Y. Wang, J. Zou, Z. Zhao, X. Han, X. Zhou, and K. L. Wang, J. Appl. Phys. 103, 066104 (2008).
12.Y. Wang, J. Zou, Z. Zhao, X. Han, X. Zhou, and K. L. Wang, Appl. Phys. Lett. 92, 101913 (2008).
13.D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature 455, 515 (2008).
14.T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
15.Y. Faxian Xiu, J. Kim, A. Hong, J. Tang, A. P. Jacob, J. Zou, and K. L. Wang, Nat. Mater. 9, 337 (2010).
16.K. L. Wang and F. Xiu, Thin Solid Films 518, S104 (2010).
17.S. Sapra, D. D. Sarma, S. Sanvito, and N. A. Hill, Nano Lett. 2, 605 (2002).
18.M. I. v. d. Meulen, N. Petkov, M. A. Morris, O. Kazakova, X. Han, K. L. Wang, A. P. Jacob, and J. D. Holmes, Nano Lett. 9, 50 (2009).
19.A. Šiušys, J. Sadowski, M. Sawicki, S. Kret, T. Wojciechowski, K. Gas, W. Szuszkiewicz, A. Kaminska, and T. Story, Nano Lett. 14, 4263 (2014).
20.J. Tang, T. Nie, and K. L. Wang, ECS Trans. 64, 613 (2014).
21.J. Kassim, C. Nolph, M. Jamet, P. Reinke, and J. Floro, Appl. Phys. Lett. 101, 242407 (2012).
22.J. Kassim, C. Nolph, M. Jamet, P. Reinke, and J. Floro, J. Appl. Phys. 113, 073910 (2013).
23.I. T. Yoon, J. Supercond. Novel Magn. 23, 319 (2009).
24.I. T. Yoon, C. J. Park, and T. W. Kang, J. Supercond. Novel Magn. 23, 115 (2009).
25.S. W. Lee, L. J. Chen, P. S. Chen, M. J. Tsai, C. W. Liu, T. Y. Chien, and C. T. Chia, Appl. Phys. Lett. 83, 5283 (2003).
26.G. Katsaros, M. Stoffel, A. Rastelli, O. G. Schmidt, K. Kern, and J. Tersoff, Appl. Phys. Lett. 91, 013112 (2007).
27.M. Stoffel, A. Malachias, A. Rastelli, T. H. Metzger, and O. G. Schmidt, Appl. Phys. Lett. 94, 253114 (2009).
28.G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science 279, 353 (1998).
29.H. Yang, Z. Tao, J. Lin, F. Lu, Z. Jiang, and Z. Zhong, Appl. Phys. Lett. 92, 111907 (2008).
30.A. Stroppa, S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 68, 155203 (2003).
31.M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko, Nat. Mater. 5, 653 (2006).
32.T. Devillers, M. Jamet, A. Barski, V. Poydenot, P. Bayle-Guillemaud, E. Bellet-Amalric, S. Cherifi, and J. Cibert, Phys. Rev. B 76, 205306 (2007).
33.C. Bihler, C. Jaeger, T. Vallaitis, M. Gjukic, M. S. Brandt, E. Pippel, J. Woltersdorf, and U. Gösele, Appl. Phys. Lett. 88, 112506 (2006).
34.F. Xiu, Y. Wang, K. Wong, Y. Zhou, X. Kou, J. Zou, and K. L. Wang, Nanotechnology 21, 255602 (2010).
35.P. F. Fewster, Crit. Rev. Solid State Mater. Sci. 22, 66 (1997).
36.Z. M. Jiang, X. M. Jiang, W. R. Jiang, Q. J. Jia, W. L. Zheng, and D. C. Qian, Appl. Phys. Lett. 76, 3397 (2000).
37.D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
38.A. J. R. Da Silva, A. Fazzio, and A. Antonelli, Phys. Rev. B 70, 193205 (2004).
39.M. Shaughnessy, C. Y. Fong, R. Snow, L. H. Yang, X. S. Chen, and Z. M. Jiang, Phys. Rev. B 82, 035202 (2010).
40.L. Zeng, J. X. Cao, E. Helgren, J. Karel, E. Arenholz, L. Ouyang, D. J. Smith, R. Q. Wu, and F. Hellman, Phys. Rev. B 82, 165202 (2010).
41.J. T. Arantes, A. J. R. da Silva, A. Fazzio, and A. Antonelli, Phys. Rev. B 75, 075316 (2007).
42.M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).

Data & Media loading...


Article metrics loading...



MnGequantum dots(QDs) samples were grown by molecular beam epitaxy on Si substrates and 15-nm-thick fully strained SiGe virtual substrates, respectively. The QDs samples grown on the SiGe virtual substrates show a significant ferromagnetism with a Curie temperature of 227 K, while the QDs samples grown on the Si substrates are non-ferromagnetic. Microstructures of the QDs samples were characterized by high resolution transmission electron microscopy and synchrotron radiation X-ray diffraction. Interdependence between microstructure and ferromagnetism of Mn-doped GeQDs was investigated. For the QDs sample grown on the strained SiGe virtual substrate, although the ferromagnetic phase MnGe clusters were found to be formed in small dome-shaped dots, the significant ferromagnetism observed in that sample is attributed to ferromagnetic phase Mn-doped large dome-shaped GeQDs, rather than to the ferromagnetic phase MnGe clusters. The fully strained SiGe virtual substrates would result in a residual strain into the QDs and an increase in Ge composition in the QDs. Both consequences favor the formations of ferromagnetic phase Mn-doped GeQDs from points of view of quantum confinement effect as well as Mn doping at substitutional sites.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd