Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
2.J. Santamaria, J. Garcia-Barriocanal, Z. Sefrioui, and C. Leon, Int. J. Mod. Phys. B 27, 1330013 (2013).
3.J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos, and J. M. Rondinelli, Rev. Mod. Phys. 86, 1189 (2014).
4.Y. Liu and X. Ke, J. Phys.: Condens. Matter 27, 373003 (2015).
5.A. Ohtomo and H. Hwang, Nature 427, 423 (2004).
6.N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
7.A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).
8.Y. Liu, F. A. Cuellar, Z. Sefrioui, J. W. Freeland, M. R. Fitzsimmons, C. Leon, J. Santamaria, and S. G. E. te Velthuis, Phys. Rev. Lett. 111, 247203 (2013).
9.Y. Liu, C. Visani, N. M. Nemes, M. R. Fitzsimmons, L. Y. Zhu, J. Tornos, M. Garcia-Hernandez, M. Zhernenkov, A. Hoffmann, C. Leon et al., Phys. Rev. Lett. 108, 207205 (2012).
10.S. Fusil, V. Garcia, A. Barthélémy, and M. Bibes, Annu. Rev. Mater. Res. 44, 91 (2014).
11.C. Vaz, J. Hoffman, Y. Segal, J. Reiner, R. Grober, Z. Zhang, C. Ahn, and F. Walker, Phys. Rev. Lett. 104, 127202 (2010).
12.H. Lu, T. A. George, Y. Wang, I. Ketsman, J. Burton, C.-W. Bark, S. Ryu, D. Kim, J. Wang, C. Binek et al., Appl. Phys. Lett. 100, 232904 (2012).
13.M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, and A. Fert, Nat. Mater. 6, 296 (2007).
14.E. Tsymbal, A. Gruverman, V. Garcia, M. Bibes, and A. Barthélémy, MRS Bull. 37, 138 (2012).
15.Y. Yin, J. Burton, Y. M. Kim, A. Y. Borisevich, S. J. Pennycook, S. Yang, T. Noh, A. Gruverman, X. Li, E. Tsymbal et al., Nat. Mater. 12, 397 (2013).
16.J. Chakhalian, J. Freeland, H.-U. Habermeier, G. Cristiani, G. Khaliullin, M. Van Veenendaal, and B. Keimer, Science 318, 1114 (2007).
17.P. Yu, J.-S. Lee, S. Okamoto, M. Rossell, M. Huijben, C.-H. Yang, Q. He, J. Zhang, S. Yang, M. Lee et al., Phys. Rev. Lett. 105, 027201 (2010).
18.J. Seo, W. Prellier, P. Padhan, P. Boullay, J.-Y. Kim, H. Lee, C. Batista, I. Martin, E. E. Chia, T. Wu et al., Phys. Rev. Lett. 105, 167206 (2010).
19.X. Zhai, L. Cheng, Y. Liu, C. M. Schlepütz, S. Dong, H. Li, X. Zhang, S. Chu, L. Zheng, J. Zhang et al., Nat. Commun. 5, 4283 (2014).
20.A. Bhattacharya and S. J. May, Annu. Rev. Mater. Res. 44, 65 (2014).
21.C. Bi, Y. Liu, T. Newhouse-Illige, M. Xu, M. Rosales, J. Freeland, O. Mryasov, S. Zhang, S. te Velthuis, and W. Wang, Phys. Rev. Lett. 113, 267202 (2014).
22.Z. Sefrioui, D. Arias, V. Pena, J. Villegas, M. Varela, P. Prieto, C. León, J. Martinez, and J. Santamaria, Phys. Rev. B 67, 214511 (2003).
23.V. Pena, Z. Sefrioui, D. Arias, C. Leon, J. Santamaria, M. Varela, S. Pennycook, and J. Martinez, Phys. Rev. B 69, 224502 (2004).
24.C.-C. Kao, C. Chen, E. Johnson, J. Hastings, H. Lin, G. Ho, G. Meigs, J.-M. Brot, S. Hulbert, Y. Idzerda et al., Phys. Rev. B 50, 9599 (1994).
25.J. Freeland, J. Kavich, K. Gray, L. Ozyuzer, H. Zheng, J. Mitchell, M. Warusawithana, P. Ryan, X. Zhai, R. Kodama et al., J. Phys.: Condens. Matter 19, 315210 (2007).
26.J. Freeland, J. Lang, G. Srajer, R. Winarski, D. Shu, and D. Mills, Rev. Sci. Instrum. 73, 1408 (2002).
27.M. Salluzzo, S. Gariglio, D. Stornaiuolo, V. Sessi, S. Rusponi, C. Piamonteze, G. De Luca, M. Minola, D. Marré, A. Gadaleta et al., Phys. Rev. Lett. 111, 087204 (2013).
28.S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli et al., Nat. Mater. 10, 753 (2011).
29.F. Y. Bruno, J. Garcia-Barriocanal, M. Varela, N. Nemes, P. Thakur, J. Cezar, N. Brookes, A. Rivera-Calzada, M. Garcia-Hernandez, C. Leon et al., Phys. Rev. Lett. 106, 147205 (2011).
30.P. Carra, B. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).
31.J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 81, 1953 (1998).
32.J. Kavich, M. Warusawithana, J. Freeland, P. Ryan, X. Zhai, R. Kodama, and J. Eckstein, Phys. Rev. B 76, 014410 (2007).
33. This is well illustrated by another example in Ref. 25 (Figs. 4 and 5). When the magnetic depth profile changes slightly, the simulated x-ray magnetic scattering (dichroic reflectivity here) shows significant changes as a function of energy, while the line shape of the magneto-optical coefficient is kept constant. The imaginary part of the magneto-optical coefficient relates to XMCD, as measured by dichroic TEY here.
34.T. Y. Chien, L. F. Kourkoutis, J. Chakhalian, B. Gray, M. Kareev, N. P. Guisinger, D. A. Muller, and J. W. Freeland, Nat. Commun. 4, 2336 (2013).

Data & Media loading...


Article metrics loading...



In artificial multiferroics hybrids consisting of ferromagnetic LaSrMnO (LSMO) and ferroelectric BaTiOepitaxial layers, net Ti moments are found from polarized resonant soft x-ray reflectivity and absorption. The Ti dichroic reflectivity follows the Mn signal during the magnetization reversal, indicating exchange coupling between the Ti and Mn ions. However, the Ti dichroic reflectivity shows stronger temperature dependence than the Mn dichroic signal. Besides a reduced ferromagnetic exchange coupling in the interfacial LSMO layer, this may also be attributed to a weak Ti-Mn exchange coupling that is insufficient to overcome the thermal energy at elevated temperatures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd