Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/4/10.1063/1.4946884
1.
1.Atomic Layer Deposition for Semiconductors, edited by C. Seong Hwang (Springer Science & Business Media, 2013).
2.
2.S. M. George, Chem. Rev. 110, 111131 (2010).
http://dx.doi.org/10.1021/cr900056b
3.
3.R. W. Johnson, A. Hultqvist, and S. F. Bent, Mater. Today 17, 236 (2014).
http://dx.doi.org/10.1016/j.mattod.2014.04.026
4.
4.F. Gao, S. Arpiainen, and R. L. Puurunen, J. Vac. Sci. Technol., A 33, 010601 (2015).
http://dx.doi.org/10.1116/1.4903941
5.
5.V. Kocsis, S. Bordács, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. Kézsmárki, Phys. Rev. B 87, 064416 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.064416
6.
6.Handbook of Magnetic Materials, edited by E. P. Wohlfarth (North-Holland Publishing Company, 1982), Vol. 3.
7.
7.M. C. Kemei, S. L. Moffitt, L. E. Darago, R. Seshadri, M. R. Suchomel, D. P. Shoemaker, K. Page, and J. Siewenie, Phys. Rev. B 89, 174410 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.174410
8.
8.G. Hu and Y. Suzuki, Phys. Rev. Lett. 89, 276601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.276601
9.
9.M. G. Chapline and S. X. Wang, Phys. Rev. B 74, 014418 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.014418
10.
10.B. Sun, J. Wu, X. Jia, F. Lou, and P. Chen, J. Sol-Gel Sci. Technol. 75, 664669 (2015).
http://dx.doi.org/10.1007/s10971-015-3736-y
11.
11.P. S. Sathiskumar, C. R. Thomas, and G. Madras, Ind. Eng. Chem. Res. 51, 1010810116 (2012).
http://dx.doi.org/10.1021/ie301435r
12.
12.H. Adkins and R. Connor, J. Am. Chem. Soc. 53, 10911095 (1931).
http://dx.doi.org/10.1021/ja01354a041
13.
13.R. Connor, K. Folkers, and H. Adkins, J. Am. Chem. Soc. 54, 11381145 (1932).
http://dx.doi.org/10.1021/ja01342a042
14.
14.S. Roy and J. Ghose, Mater. Res. Bull. 34, 11791186 (1999).
http://dx.doi.org/10.1016/S0025-5408(99)00109-9
15.
15.A. Petric and H. Ling, J. Am. Ceram. Soc. 90, 1515 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2007.01522.x
16.
16.A. M. Kawamoto, L. C. Pardini, and C. Rezende, Aerosp. Sci. Technol. 8, 591598 (2004).
http://dx.doi.org/10.1016/j.ast.2004.06.010
17.
17.P. W. M. Jacobs and H. M. Whitehead, Chem. Rev. 69, 551590 (1969).
http://dx.doi.org/10.1021/cr60260a005
18.
18.R. W. Armstrong, B. Baschung, and D. W. Booth, Nano Lett. 3, 253255 (2003).
http://dx.doi.org/10.1021/nl025905k
19.
19.R. Prasad and P. Singh, Bull. Chem. React. Eng. Catal. 6(2), 63 (2011).
http://dx.doi.org/10.9767/bcrec.6.2.829.63-113
20.
20.K. S. De, J. Ghose, and K. S. R. C. Murthy, J. Solid State Chem. 43, 261 (1982).
http://dx.doi.org/10.1016/0022-4596(82)90238-9
21.
21.R. Bajaj, M. Sharma, and D. Bahadur, Dalton Trans. 42, 67366744 (2013).
http://dx.doi.org/10.1039/c2dt32753h
22.
22.N. Padmanaban, B. N. Avasthi, and J. Ghose, J. Solid State Chem. 81, 250 (1989).
http://dx.doi.org/10.1016/0022-4596(89)90012-1
23.
23.E. Prince, Acta Crystallogr. 10, 554 (1957).
http://dx.doi.org/10.1107/S0365110X5700198X
24.
24.B. J. Kennedy and Q. Zhou, J. Solid State Chem. 181, 2227 (2008).
http://dx.doi.org/10.1016/j.jssc.2008.05.018
25.
25.J. M. Iwata, R. V. Chopdekar, F. J. Wong, B. B. Nelson-Cheeseman, E. Arenholz, and Y. Suzuki, J. Appl. Phys. 105, 07A905 (2009).
http://dx.doi.org/10.1063/1.3058612
26.
26.R. S. Yu and C. M. Wu, Appl. Surf. Sci. 282, 9297 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.05.061
27.
27.H. Sun, M. A. P. Yazdi, P. Briois, J. F. Pierson, F. Sanchette, and A. Billard, Vacuum 114, 101107 (2015).
http://dx.doi.org/10.1016/j.vacuum.2015.01.009
28.
28.A. Barnabé, Y. Thimont, M. Lalanne, L. Presmanes, and P. Tailhades, J. Mater. Chem. C 3, 60126024 (2015).
http://dx.doi.org/10.1039/C5TC01070E
29.
29.Y. Chang, C. Lin, and B. Lee, in ECS Proceedings of the Electrochemical Society 203rd Meeting - CVD XVI and EUROCVD 14, edited byM. Allendorf, F. Maury, and F. Teyssandier (Electrochemical Society, Pennington, NJ, 2003), pp. 14921499.
30.
30.T. S. Tripathi, J.-P. Niemelä, and M. Karppinen, J. Mater. Chem. C 3, 83648371 (2015).
http://dx.doi.org/10.1039/C5TC01384D
31.
31.E. Ahvenniemi, M. Matvejeff, and M. Karppinen, Dalton Trans. 44, 8001 (2015).
http://dx.doi.org/10.1039/C5DT00436E
32.
32.K. Uusi-Esko, E.-L. Rautama, M. Laitinen, T. Sajavaara, and M. Karppinen, Chem. Mater. 22, 62976300 (2010).
http://dx.doi.org/10.1021/cm102003y
33.
33.K. Uusi-Esko and M. Karppinen, Chem. Mater. 23, 18351840 (2011).
http://dx.doi.org/10.1021/cm103480d
34.
34.M. Lie, O. Nilsen, H. Fjellvåg, and A. Kjekshus, Dalton Trans. 3, 481 (2009).
http://dx.doi.org/10.1039/B809974J
35.
35.L. K. Tan, B. Liu, J. H. Teng, S. Guo, H. Y. Lowd, and K. P. Loh, Nanoscale 6, 10584 (2014).
http://dx.doi.org/10.1039/C4NR02451F
36.
36.W. D. Callister, Materials Science and Engineering—An Introduction (John Wiley and Sons, New York, 1997).
37.
37.Z. Ma, Z. Xiao, J. A. van Bokhoven, and C. Liang, J. Mater. Chem. 20, 755760 (2010).
http://dx.doi.org/10.1039/B917546F
38.
38.Handbook of Inorganic Compounds, 2nd ed., edited by D. L. Perry (CRC Press, 2011).
39.
39.K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura, J. Phys. Soc. Jpn. 77, 034713 (2008).
http://dx.doi.org/10.1143/JPSJ.77.034713
40.
40.M. R. Suchomel, D. P. Shoemaker, and L. Ribaud, Phys. Rev. B 86, 054406 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.054406
41.
41.S. T. Kshirsagar and C. D. Sabane, Jpn. J. Appl. Phys., Part 1 10, 794 (1971).
http://dx.doi.org/10.1143/JJAP.10.794
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/4/10.1063/1.4946884
Loading
/content/aip/journal/aplmater/4/4/10.1063/1.4946884
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/4/10.1063/1.4946884
2016-04-14
2016-10-01

Abstract

We report the magnetic and optical properties of CuCrOthin films fabricated by atomic layer deposition(ALD) from Cu(thd), Cr(acac), and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCrOfilms are interesting material candidates for various frontier applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/4/1.4946884.html;jsessionid=JgF2N72vUZLzMg7NAvLNGXkr.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/4/10.1063/1.4946884&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/4/10.1063/1.4946884&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/4/10.1063/1.4946884'
Top,Right1,Right2,Right3,