Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/4/10.1063/1.4946885
1.
1.D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science 279, 548552 (1998).
http://dx.doi.org/10.1126/science.279.5350.548
2.
2.J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, and Y. Yamauchi, Angew. Chem., Int. Ed. 54, 588593 (2015);
http://dx.doi.org/10.1002/anie.201407629
2.J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, and Y. Yamauchi, Angew. Chem. 127, 598603 (2015).
http://dx.doi.org/10.1002/ange.201407629
3.
3.B. Jiang, C. Li, M. Imura, J. Tang, and Y. Yamauchi, Adv. Sci. 2, 1500112 (2015).
http://dx.doi.org/10.1002/advs.201500112
4.
4.T.-W. Kim, P.-W. Chung, and V. S.-Y. Lin, Chem. Mater. 22, 50935104 (2010).
http://dx.doi.org/10.1021/cm1017344
5.
5.S. Che, A. E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, and T. Tatsumi, Nat. Mater. 2, 801805 (2003).
http://dx.doi.org/10.1038/nmat1022
6.
6.C. Li, T. Sato, and Y. Yamauchi, Angew. Chem., Int. Ed. 52, 80508053 (2013);
http://dx.doi.org/10.1002/anie.201303035
6.C. Li, T. Sato, and Y. Yamauchi, Angew. Chem. 125, 82088211 (2013).
http://dx.doi.org/10.1002/ange.201303035
7.
7.C. Reitz, J. Haetge, C. Suchomski, and T. Brezesinski, Chem. Mater. 25, 46334642 (2013).
http://dx.doi.org/10.1021/cm402995a
8.
8.C. Liang, K. Hong, G. A. Guiochon, J. W. Mays, and S. Dai, Angew. Chem., Int. Ed. 43, 57855789 (2004).
http://dx.doi.org/10.1002/anie.200461051
9.
9.J. Wei, H. Wang, Y. Deng, Z. Sun, L. Shi, B. Tu, M. Luqman, and D. Zhao, J. Am. Chem. Soc. 133, 2036920377 (2011).
http://dx.doi.org/10.1021/ja207525e
10.
10.P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Nature 396, 152155 (1998).
http://dx.doi.org/10.1038/24132
11.
11.Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein, and D. Zhao, Chem. Mater. 18, 44474464 (2006).
http://dx.doi.org/10.1021/cm060921u
12.
12.H. Wang, L. Wang, T. Sato, Y. Sakamoto, S. Tominaka, K. Miyasaka, N. Miyamoto, Y. Nemoto, O. Terasaki, and Y. Yamauchi, Chem. Mater. 24, 15911598 (2012).
http://dx.doi.org/10.1021/cm300054b
13.
13.Y. Yamauchi and K. Kuroda, Chem. Asian. J. 3, 664676 (2008).
http://dx.doi.org/10.1002/asia.200700350
14.
14.Y. Wan and D. Zhao, Chem. Rev. 107, 28212860 (2007).
http://dx.doi.org/10.1021/cr068020s
15.
15.C.-W. Wu, T. Ohsuna, M. Kuwabara, and K. Kuroda, J. Am. Chem. Soc. 128, 45444545 (2006).
http://dx.doi.org/10.1021/ja060453p
16.
16.C. Liang, Z. Li, and S. Dai, Angew. Chem., Int. Ed. 47, 36963717 (2008).
http://dx.doi.org/10.1002/anie.200702046
17.
17.E. Ortel, A. Fischer, L. Chuenchom, J. Polte, F. Emmerling, B. M. Smarsly, and R. Kraehnert, Small 8, 298309 (2012).
http://dx.doi.org/10.1002/smll.201101520
18.
18.E. Bloch, T. Phan, D. Bertin, P. Llewellyn, and V. Hornebecq, Microporous Mesoporous Mater. 112, 612620 (2008).
http://dx.doi.org/10.1016/j.micromeso.2007.10.051
19.
19.C.-F. Lin, H.-P. Lin, C.-Y. Mou, and S.-T. Liu, Microporous Mesoporous Mater. 91, 151155 (2006).
http://dx.doi.org/10.1016/j.micromeso.2005.11.034
20.
20.T. H. Epps, E. W. Cochran, C. M. Hardy, T. S. Bailey, R. S. Waletzko, and F. S. Bates, Macromolecules 37, 70857088 (2004).
http://dx.doi.org/10.1021/ma0493426
21.
21.M. Stefik, S. Wang, R. Hovden, H. Sai, M. W. Tate, D. A. Muller, U. Steiner, S. M. Gruner, and U. Wiesner, J. Mater. Chem. 22, 10781087 (2012).
http://dx.doi.org/10.1039/C1JM14113A
22.
22.J. Zhang, Y. Deng, J. Wei, Z. Sun, D. Gu, H. Bongard, C. Lu, H. Wu, B. Tu, F. Schüth, and D. Zhao, Chem. Mater. 21, 39964005 (2009).
http://dx.doi.org/10.1021/cm901371r
23.
23.B. Sun, C. Guo, Y. Yao, and S. Che, J. Mater. Chem. 22, 1907619080 (2012).
http://dx.doi.org/10.1039/c2jm33867j
24.
24.M. Stefik, S. Mahajan, H. Sai, T. H. Epps, F. S. Bates, S. M. Gruner, F. J. DiSalvo, and U. Wiesner, Chem. Mater. 21, 54665473 (2009).
http://dx.doi.org/10.1021/cm902626z
25.
25.S. W. Robbins, P. A. Beaucage, H. Sai, K. W. Tan, J. G. Werner, J. P. Sethna, F. J. DiSalvo, S. M. Gruner, R. B. Van Dover, and U. Wiesner, Sci. Adv. 2, e1501119-1e1501119-8 (2016).
http://dx.doi.org/10.1126/sciadv.1501119
26.
26.P. Docampo, M. Stefik, S. Guldin, R. Gunning, N. A. Yufa, N. Cai, P. Wang, U. Steiner, U. Wiesner, and H. J. Snaith, Adv. Energy Mater. 2, 676682 (2012).
http://dx.doi.org/10.1002/aenm.201100699
27.
27.J. G. Werner, T. N. Hoheisel, and U. Wiesner, ACS Nano 8, 731743 (2014).
http://dx.doi.org/10.1021/nn405392t
28.
28.Z. Li, K. Hur, H. Sai, T. Higuchi, A. Takahara, H. Jinnai, S. M. Gruner, and U. Wiesner, Nat. Commun. 5, 3247-13247-10 (2014).
http://dx.doi.org/10.1038/ncomms4247
29.
29.J. Rzayev and M. A. Hillmyer, J. Am. Chem. Soc. 127, 1337313379 (2005).
http://dx.doi.org/10.1021/ja053731d
30.
30.J. Rzayev and M. A. Hillmyer, Macromolecules 38, 35 (2005).
http://dx.doi.org/10.1021/ma047870b
31.
31.D. H. Lee, S. Park, W. Gu, and T. P. Russell, ACS Nano 5, 12071214 (2011).
http://dx.doi.org/10.1021/nn102832c
32.
32.B. P. Bastakoti, S. Ishihara, S.-Y. Leo, K. Ariga, K. C.-W. Wu, and Y. Yamauchi, Langmuir 30, 651659 (2014).
http://dx.doi.org/10.1021/la403901x
33.
33.Y. Li, B. P. Bastakoti, V. Malgras, C. Li, J. Tang, J. H. Kim, and Y. Yamauchi, Angew. Chem., Int. Ed. 54, 1107311077 (2015);
http://dx.doi.org/10.1002/anie.201505232
33.Y. Li, B. P. Bastakoti, V. Malgras, C. Li, J. Tang, J. H. Kim, and Y. Yamauchi, Angew. Chem. 127, 1122511229 (2015).
http://dx.doi.org/10.1002/ange.201505232
34.
34.L. Wang and Y. Yamauchi, Chem. Eur. J. 17, 88108815 (2011).
http://dx.doi.org/10.1002/chem.201100386
35.
35.P. J. Cappillino, K. M. Hattar, B. G. Clark, R. J. Hartnett, V. Stavila, M. A. Hekmaty, B. W. Jacobs, and D. B. Robinson, J. Mater. Chem. A 1, 602610 (2013).
http://dx.doi.org/10.1039/C2TA00190J
36.
36.Y. Yamauchi, A. Sugiyama, R. Morimoto, A. Takai, and K. Kuroda, Angew. Chem., Int. Ed. 47, 53715373 (2008).
http://dx.doi.org/10.1002/anie.200801381
37.
37.Y. Li, B. P. Bastakati, M. Imura, S. M. Hwang, Z. Sun, J. H. Kim, S. X. Dou, and Y. Yamauchi, Chem. Eur. J. 20, 60276032 (2014).
http://dx.doi.org/10.1002/chem.201304689
38.
38.B. P. Bastakoti, Y. Li, T. Kimura, and Y. Yamauchi, Small 11, 19922002 (2015).
http://dx.doi.org/10.1002/smll.201402573
39.
39.B. P. Bastakoti, Y. Li, M. Imura, N. Miyamoto, T. Nakato, T. Sasaki, and Y. Yamauchi, Angew. Chem., Int. Ed. 54, 42224225 (2015).
http://dx.doi.org/10.1002/anie.201410942
40.
40.Y. Li, B. P. Bastakoti, M. Imura, N. Suzuki, X. Jiang, S. Ohki, K. Deguchi, M. Suzuki, S. Arai, and Y. Yamauchi, Chem. Asian J. 10, 183187 (2015).
http://dx.doi.org/10.1002/asia.201402636
41.
41.Y. Li, B. P. Bastakoti, M. Imura, P. Dai, and Y. Yamauchi, Chem. Asian J. 10, 25902593 (2015).
http://dx.doi.org/10.1002/asia.201500745
42.
42.B. P. Bastakoti, Y. Li, N. Miyamoto, N. M. Sanchez-Ballester, H. Abe, J. Ye, P. Srinivasu, and Y. Yamauchi, Chem. Commun. 50, 91019104 (2014).
http://dx.doi.org/10.1039/C4CC02556C
43.
43.M. Zhao, B. P. Bastakoti, Y. Li, H. Xu, J. Ye, Z. Liu, and Y. Yamauchi, Chem. Commun. 51, 1458214585 (2015).
http://dx.doi.org/10.1039/C5CC04903B
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/4/10.1063/1.4946885
Loading
/content/aip/journal/aplmater/4/4/10.1063/1.4946885
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/4/10.1063/1.4946885
2016-04-25
2016-09-30

Abstract

This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene--poly(2-vinylpyridine)--poly(ethylene oxide) (abbreviated as PS--P2VP--PEO).

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/4/1.4946885.html;jsessionid=mKbppZ5q8ShND5d_9y2Ogh9L.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/4/10.1063/1.4946885&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/4/10.1063/1.4946885&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/4/10.1063/1.4946885'
Top,Right1,Right2,Right3,