Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. Piliego, L. Protesescu, S. Z. Bisri, M. V. Kovalenko, and M. A. Loi, Energy Environ. Sci. 6(10), 3054 (2013).
2.N. Yaacobi-Gross, M. Soreni-Harari, M. Zimin, S. Kababya, A. Schmidt, and N. Tessler, Nat. Mater. 10(12), 974 (2011).
3.N. Yaacobi-Gross, N. Garphunkin, O. Solomeshch, A. Vaneski, A. S. Susha, A. L. Rogach, and N. Tessler, ACS Nano 6(4), 3128 (2012).
4.V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature 370(6488), 354 (1994).
5.N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, Science 295(5559), 1506 (2002).
6.S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, Nature 420(6917), 800 (2002).
7.J. S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, Adv. Mater. 15(21), 1862 (2003).
8.D. S. Koktysh, N. Gaponik, M. Reufer, J. Crewett, U. Scherf, A. Eychmuller, J. M. Lupton, A. L. Rogach, and J. Feldmann, ChemPhysChem 5(9), 1435 (2004).
9.S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, Nat. Mater. 4(2), 138 (2005).
10.M. Soreni-Harari, N. Yaacobi-Gross, D. Steiner, A. Aharoni, U. Banin, O. Millo, and N. Tessler, Nano Lett. 8(2), 678 (2008).
11.M. J. Panzer, V. Wood, S. M. Geyer, M. G. Bawendi, and V. Bulovic, J. Disp. Technol. 6(3), 90 (2010).
12.P. Moroz, G. Liyanage, N. N. Kholmicheva, S. Yakunin, U. Rijal, P. Uprety, E. Bastola, B. Mellott, K. Subedi, L. F. Sun, M. V. Kovalenko, and M. Zamkov, Chem. Mater. 26(14), 4256 (2014).
13.T.-W. F. Chang, A. Maria, P. W. Cyr, V. Sukhovatkin, L. Levina, and E. H. Sargent, Synth. Met. 148(3), 257 (2005).
14.G. Kalyuzhny and R. W. Murray, J. Phys. Chem. B 109(15), 7012 (2005).
15.M. Greben, A. Fucikova, and J. Valenta, J. Appl. Phys. 117(14), 144306 (2015).
16.Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, and E. H. Sargent, Nat. Mater. 13(8), 822 (2014).
17.J. C. deMello, H. F. Wittmann, and R. H. Friend, Adv. Mater. 9(3), 230 (1997).
18.T. C. Kippeny, M. J. Bowers, A. D. Dukes, J. R. McBride, R. L. Orndorff, M. D. Garrett, and S. J. Rosenthal, J. Chem. Phys. 128(8), 084713 (2008).
19.R. Ihly, J. Tolentino, Y. Liu, M. Gibbs, and M. Law, ACS Nano 5(10), 8175 (2011).
20.M. Soreni-Harari, D. Mocatta, M. Zimin, Y. Gannot, U. Banin, and N. Tessler, Adv. Funct. Mater. 20(6), 1005 (2010).
21.K. A. Abel, J. Shan, J.-C. Boyer, F. Harris, and F. C. J. M. van Veggel, Chem. Mat. 20(12), 3794 (2008).
22.M. Tabachnyk, B. Ehrler, S. Gélinas, M. L. Böhm, B. J. Walker, K. P. Musselman, N. C. Greenham, R. H. Friend, and A. Rao, Nat. Mater. 13(11), 1033 (2014).

Data & Media loading...


Article metrics loading...



Near infrared light emitting nanocrystals are known to lose efficiency when embedded in a polymer matrix. One of the factors leading to reduced efficiency is the labile nature of the ligands that may desorb off the nanocrystal surface when the nanocrystals are in the polymer solution. We show that adding trioctylphosphine to the nanocrystal-poly(methylmethacrylate) solution prior to film casting enhances the photoluminescence efficiency. The solid films’ photoluminescence quantum efficiency values are reduced by less than a factor of two in the solid form compared to the solution case. We demonstrate record efficiency values of 25% for lead sulfide nanocrystalssolid films emitting at 1100 nm.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd