Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. Dunn, H. Kamath, and J.-M. Tarascon, “Electrical energy storage for the grid: A battery of choices,” Science 334, 928935 (2011).
2.V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, “Challenges in the development of advanced Li-ion batteries: A review,” Energy Environ. Sci. 4, 32433262 (2011).
3.J. B. Goodenough and Y. Kim, “Challenges for rechargeable Li batteries,” Chem. Mater. 22, 587603 (2010).
4.J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature 414, 359367 (2001).
5.B. L. Ellis, K. T. Lee, and L. F. Nazar, “Positive electrode materials for Li-ion and Li-batteries,” Chem. Mater. 22, 691714 (2010).
6.M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, “Metal oxides and oxysalts as anode materials for Li ion batteries,” Chem. Rev. 113, 53645457 (2013).
7.M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, “A review of conduction phenomena in Li-ion batteries,” J. Power Sources 195, 79047929 (2010).
8.J. Ma, C. Wang, and S. Wroblewski, “Kinetic characteristics of mixed conductive electrodes for lithium ion batteries,” J. Power Sources 164, 849856 (2007).
9.H. Huang, S.-C. Yin, and L. F. Nazar, “Approaching theoretical capacity of LiFePO4 at room temperature at high rates,” Electrochem. Solid-State Lett. 4, A170A172 (2001).
10.C. Wang and J. Hong, “Ionic/electronic conducting characteristics of LiFePO4 cathode materials: The determining factors for high rate performance,” Electrochem. Solid-State Lett. 10, A65A69 (2007).
11.S. W. Peterson and D. R. Wheeler, “Direct measurements of effective electronic transport in porous Li-ion electrodes,” J. Electrochem. Soc. 161, A2175A2181 (2014).
12.B. J. Lanterman, A. A. Riet, N. S. Gates, J. D. Flygare, A. D. Cutler, J. E. Vogel, D. R. Wheeler, and B. A. Mazzeo, “Micro-four-line probe to measure electronic conductivity and contact resistance of thin-film battery electrodes,” J. Electrochem. Soc. 162, A2145A2151 (2015).
13.A. Subramanian, N. S. Hudak, J. Y. Huang, Y. Zhan, J. Lou, and J. P. Sullivan, “On-chip lithium cells for electrical and structural characterization of single nanowire electrodes,” Nanotechnology 25, 265402 (2014).
14.M. Maksud, N. K. R. Palapati, B. W. Byles, E. Pomerantseva, Y. Liu, and A. Subramanian, “Dependence of Young’s modulus on the sodium content within the structural tunnels of a one-dimensional Na-ion battery cathode,” Nanoscale 7, 1764217648 (2015).
15.N. K. R. Palapati, E. Pomerantseva, and A. Subramanian, “Single nanowire manipulation within dielectrophoretic force fields in the sub-crossover frequency regime,” Nanoscale 7, 31093116 (2015).
16.M. Maksud, J. Yoo, C. T. Harris, N. K. R. Palapati, and A. Subramanian, “Young’s modulus of [111] germanium nanowires,” APL Mater. 3, 116101 (2015).
17.A. Subramanian, L. X. Dong, J. Tharian, U. Sennhauser, and B. J. Nelson, “Batch fabrication of carbon nanotube bearings,” Nanotechnology 18, 075703 (2007).
18.R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v Löhneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis,” Nano Lett. 3, 10191023 (2003).
19.A. Subramanian, T. Y. Choi, L. X. Dong, J. Tharian, U. Sennhauser, D. Poulikakos, and B. J. Nelson, “Local control of electric current driven shell etching of multiwalled carbon nanotubes,” Appl. Phys. A 89, 133139 (2007).
20.V. Aravindan, M. Reddy, S. Madhavi, S. Mhaisalkar, G. S. Rao, and B. Chowdari, “Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode,” J. Power Sources 196, 88508854 (2011).
21.M. Reddy, X. V. Teoh, T. Nguyen, Y. M. Lim, and B. Chowdari, “Effect of 0.5 M NaNO3: 0.5 M KNO3 and 0.88 M LiNO3: 0.12 M LiCl molten salts, and heat treatment on electrochemical properties of TiO2,” J. Electrochem. Soc. 159, A762A769 (2012).
22.V. Aravindan, W. Chuiling, M. Reddy, G. S. Rao, B. Chowdari, and S. Madhavi, “Carbon coated nano-LiTi2 (PO4)3 electrodes for non-aqueous hybrid supercapacitors,” Phys. Chem. Chem. Phys. 14, 58085814 (2012).
23.Y. Chabre and J. Pannetier, “Structural and electrochemical properties of the proton/γ-MnO2 system,” Prog. Solid State Chem. 23, 1130 (1995).
24.M. M. Thackeray, “Manganese oxides for lithium batteries,” Prog. Solid State Chem. 25, 171 (1997).
25.V. Aravindan, M. Reddy, S. Madhavi, G. Rao, and B. Chowdari, “Electrochemical performance of α-MnO2 nanorods/activated carbon hybrid supercapacitor,” Nanosci. Nanotechnol. Lett. 4, 724728 (2012).
26.P. Nithyadharseni, M. Reddy, H. Fanny, S. Adams, and B. Chowdari, “Facile one pot synthesis and Li-cycling properties of MnO2,” RSC Adv. 5, 6055260561 (2015).
27.Y. Gao, Z. Wang, J. Wan, G. Zou, and Y. Qian, “A facile route to synthesize uniform single-crystalline -MnO2 nanowires,” J. Cryst. Growth 279, 415419 (2005).
28.B. Byles, P. West, D. A. Cullen, K. L. More, and E. Pomerantseva, “Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries,” RSC Adv. 5, 106265 (2015).
29.S. L. Suib, “Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials,” J. Mater. Chem. 18, 16231631 (2008).
30.See supplementary material at for the relative sizes of structural tunnels with respect to the size of lithium ion and for the rate performance of the materials normalized by the second discharge capacity.[Supplementary Material]
31.S. Bach, J. P. Pereira-Ramos, and N. Baffier, “A new MnO2 tunnel related phase as host lattice for Li intercalation,” Solid State Ionics 80, 151158 (1995).
32.Y. Kadoma, S. Oshitari, K. Ui, and N. Kumagai, “Characterization and electrochemical properties of Li+ ion-exchanged products of hollandite-type Ky(Mn1−xCox)O2 for rechargeable lithium battery electrodes,” Solid State Ionics 179, 17101713 (2008).
33.N. Kumagai, T. Sasaki, S. Oshitari, and S. Komaba, “Characterization and lithium insertion characteristics of hollandite-type Ky(Mn1−xMx)O2 for rechargeable lithium battery electrodes,” J. New Mater. Electrochem. Syst. 9, 175180 (2006).
34.Y. Yang, D. Shu, J. K. You, and Z. G. Lin, “Performance and characterization of lithium–manganese-oxide cathode material with large tunnel structure for lithium batteries,” J. Power Sources 81–82, 637–641 (1999).
35.R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751767 (1976).
36.Q. Feng, H. Kanoh, Y. Miyai, and K. Ooi, “Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase,” Chem. Mater. 7, 17221727 (1995).
37.R. N. De Guzman, A. Awaluddin, Y.-F. Shen, Z. R. Tian, S. L. Suib, S. Ching, and C.-L. O’Young, “Electrical resistivity measurements on manganese oxides with layer and tunnel structures: Birnessites, todorokites, and cryptomelanes,” Chem. Mater. 7, 12861292 (1995).
38.S. L. Suib, “Porous manganese oxide octahedral molecular sieves and octahedral layered materials,” Acc. Chem. Res. 41, 479487 (2008).
39.O. Giraldo, S. L. Brock, M. Marquez, S. L. Suib, H. Hillhouse, and M. Tsapatsis, “Materials: Spontaneous formation of inorganic helices,” Nature 405, 38 (2000).
40.S. W. Lee, J. Kim, S. Chen, P. T. Hammond, and Y. Shao-Horn, “Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors,” ACS Nano 4, 38893896 (2010).
41.A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, “Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries,” Nano Lett. 9, 10021006 (2009).
42.H. Kaftelen, M. Tuncer, S. Tu, S. Repp, H. Göçmez, R. Thomann, S. Weber, and E. Erdem, “Mn-substituted spinel Li4Ti5O12 materials studied by multifrequency EPR spectroscopy,” J. Mater. Chem. A 1, 99739982 (2013).
43.P. Jakes, E. Erdem, A. Ozarowski, J. v Tol, R. Buckan, D. Mikhailova, H. Ehrenberg, and R.-A. Eichel, “Local coordination of Fe3+ in Li[Co0.98Fe0.02]O2 as cathode material for lithium ion batteries-multi-frequency EPR and Monte-Carlo Newman-superposition model analysis,” Phys. Chem. Chem. Phys. 13, 93449352 (2011).

Data & Media loading...


Article metrics loading...



Single nanowires of two manganese oxide polymorphs (α-MnO and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO as compared to that of the todorokite phase by a factor of ∼46. Despite this observation of substantially higher electronic conductivity in α-MnO, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between this electrochemical performance, the electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li+ diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Furthermore, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li+.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd