Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/5/10.1063/1.4942635
3.
3.M. Z. Jacobson, Energy Environ. Sci. 2, 148 (2009).
http://dx.doi.org/10.1039/B809990C
4.
4.J. Meyer, Nature 455, 733 (2008).
http://dx.doi.org/10.1038/455733a
5.
5.R. A. Betts, O. Boucher, M. Collins, P. M. Cox, P. D. Falloon, N. Gedney, D. L. Hemming, C. Huntingford, C. D. Jones, D. M. H. Sexton, and M. J. Webb, Nature 488, 1037 (2007).
http://dx.doi.org/10.1038/nature06045
6.
6.R. S. Haszeldine, Science 325, 1647 (2009).
http://dx.doi.org/10.1126/science.1172246
7.
7.D. W. Keith, Science 325, 1654 (2009).
http://dx.doi.org/10.1126/science.1175680
8.
8.S. Chu and A. Majumdar, Nature 488, 294 (2012).
http://dx.doi.org/10.1038/nature11475
9.
9.Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen, C.-G. Yan, and B.-H. Han, J. Am. Chem. Soc. 134, 6084 (2012).
http://dx.doi.org/10.1021/ja300438w
10.
10.S. Zulfiqar, F. Karadas, J. Park, E. Deniz, G. D. Stucky, Y. Jung, M. Atilhan, and C. T. Yavuz, Energy Environ. Sci. 4, 4528 (2011).
http://dx.doi.org/10.1039/c1ee02264d
11.
11.Y.-S. Bae and R. Q. Snurr, Angew. Chem., Int. Ed. 50, 11586 (2011).
http://dx.doi.org/10.1002/anie.201101891
12.
12.S. Choi, J. H. Drese, and C. W. Jones, ChemSusChem 2, 796 (2009).
http://dx.doi.org/10.1002/cssc.200900036
13.
13.B. Wang, A. P. Côte, H. Furukawa, M. O’Keeffe, and O. M. Yaghi, Nature 453, 207 (2008).
http://dx.doi.org/10.1038/nature06900
14.
14.H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, and O. M. Yaghi, Science 329, 424 (2010).
http://dx.doi.org/10.1126/science.1192160
15.
15.A. Torrisi, R. G. Bell, and C. Mellot–Draznieks, Cryst. Growth Des. 10, 2839 (2010).
http://dx.doi.org/10.1021/cg100646e
16.
16.J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, and J. Liu, Chem. Soc. Rev. 41, 2308 (2012).
http://dx.doi.org/10.1039/C1CS15221A
17.
17.A. L. Dzubak, L.-C. Lin, J. Kim, J. A. Swisher, R. Poloni, S. N. Maximoff, B. Smit, and L. Gagliardi, Nat. Chem. 4, 810 (2012).
http://dx.doi.org/10.1038/nchem.1432
18.
18.Y. Jiao, A. J. Du, Z. H. Zhu, and S. C. Smith, J. Mater. Chem. 20, 10426 (2010).
http://dx.doi.org/10.1039/c0jm01416h
19.
19.M. Cinke, J. Li, C. W. Bauschlicher, A. Ricca, and M. Meyyappan, Chem. Phys. Lett. 376, 761 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)01124-2
20.
20.F. Su, C. Lu, A.-J. Chung, and C.-H. Liao, Appl. Energy 113, 706 (2014).
http://dx.doi.org/10.1016/j.apenergy.2013.08.001
21.
21.T. Zhang, Q. Xue, S. Zhang, and M. Dong, Nano Today 7, 180 (2012).
http://dx.doi.org/10.1016/j.nantod.2012.04.006
22.
22.Y. Jiao, A. Du, Z. Zhu, V. Rudolph, G. Q. Lu, and S. C. Smith, Catal. Today 175, 271 (2011).
http://dx.doi.org/10.1016/j.cattod.2011.02.043
23.
23.J.-X. Zhao and Y.-H. Ding, J. Chem. Theory Comput. 5, 1099 (2009).
http://dx.doi.org/10.1021/ct9000069
24.
24.P. Zhang, X. L. Hou, J. L. Mi, Q. Jiang, H. Aslan, and M. D. Dong, RSC Adv. 4, 48994 (2014).
http://dx.doi.org/10.1039/C4RA07542K
25.
25.Q. Sun, Z. Li, D. J. Searles, Y. Chen, G. Lu, and A. Du, J. Am. Chem. Soc. 135, 82468253 (2013).
http://dx.doi.org/10.1021/ja400243r
26.
26.Y. Jiao, Y. Zheng, S. C. Smith, A. Du, and Z. Zhu, ChemSusChem 7, 435 (2014).
http://dx.doi.org/10.1002/cssc.201300624
27.
27.S. K. Lee, N. Kim, D. G. Ha, and S. K. Kim, J. Am. Chem. Soc. 130, 16241 (2008).
http://dx.doi.org/10.1021/ja8039103
28.
28.A. Zunger, A. Katzir, and A. Halperin, Phys. Rev. B 13, 5560 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5560
29.
29.K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3, 404 (2004).
http://dx.doi.org/10.1038/nmat1134
30.
30.A. J. Du, Y. Chen, Z. H. Zhu, G. Q. Lu, and S. C. Smith, J. Am. Chem. Soc. 131, 1682 (2009).
http://dx.doi.org/10.1021/ja809053x
31.
31.M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, Nature 488, 627 (2012).
http://dx.doi.org/10.1038/nature11408
32.
32.L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J. C. Idrobo, A.-P. Li, and G. Gu, Science 343, 163 (2014).
http://dx.doi.org/10.1126/science.1246137
33.
33.Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, A. Babakhani, J.-C. Idrobo, R. Vajtai, J. Lou, and P. M. Ajayan, Nat. Nanotechnol. 8, 119 (2013).
http://dx.doi.org/10.1038/nnano.2012.256
34.
34.J. Park, J. Lee, L. Liu, K. W. Clark, C. Durand, C. Park, B. G. Sumpter, A. P. Baddorf, A. Mohsin, M. Yoon, G. Gu, and A.-P. Li, Nat. Commun. 5, 5403 (2014).
http://dx.doi.org/10.1038/ncomms6403
35.
35.Q. Sun, Y. Dai, Y. Ma, W. Wei, and B. Huang, RSC Adv. 5, 33037 (2015).
http://dx.doi.org/10.1039/C5RA03056K
36.
36.X. Tan, L. Kou, and S. C. Smith, ChemSusChem 8, 2987 (2015).
http://dx.doi.org/10.1002/cssc.201500026
37.
37.X. Tan, L. Kou, and S. C. Smith, “Charge transfer and transport at the nanoscale,” Chem. Phys. (submitted).
38.
38.X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. A. Antonietti, Nat. Mater. 8, 76 (2009).
http://dx.doi.org/10.1038/nmat2317
39.
39.A. Du, S. Sanvito, and S. C. Smith, Phys. Rev. Lett. 108, 197207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.197207
40.
40.J. S. Lee, X. Q. Wang, H. M. Luo, and S. Dai, Adv. Mater. 22, 1004 (2010).
http://dx.doi.org/10.1002/adma.200903403
41.
41.X. Tan, L. Kou, H. A. Tahini, and S. C. Smith, Sci. Rep. 5, 17636 (2015).
http://dx.doi.org/10.1038/srep17636
42.
42.X. Tan, L. Z. Kou, H. A. Tahini, and S. C. Smith, ChemSusChem 8, 3626 (2015).
http://dx.doi.org/10.1002/cssc.201501082
43.
43.B. Delley, J. Chem. Phys. 113, 7756 (2000).
http://dx.doi.org/10.1063/1.1316015
44.
44.J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
45.
45.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
46.
46.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
47.
47.T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett. 49, 225 (1977).
http://dx.doi.org/10.1016/0009-2614(77)80574-5
48.
48.Y. Jiao, A. Du, Z. H. Zhu, V. Rudolph, and S. C. Smith, J. Phys. Chem. C 114, 7846 (2010).
http://dx.doi.org/10.1021/jp911419k
49.
49.Z. Shi, A. Kutana, and B. I. Yakobson, J. Phys. Chem. Lett. 6, 106 (2015).
http://dx.doi.org/10.1021/jz502093c
50.
50.E. Mullins, R. Oldland, Y. A. Liu, S. Wang, S. I. Sandler, C.-C. Chen, M. Zwolak, and K. C. Seavey, Ind. Eng. Chem. Res. 45, 4389 (2006).
http://dx.doi.org/10.1021/ie060370h
51.
51.X. Nie, W. Luo, M. J. Janik, and A. Asthagiri, J. Catal. 312, 108 (2014).
http://dx.doi.org/10.1016/j.jcat.2014.01.013
52.
52.H. Zhao, Z. Lin, and T. B. Marder, J. Am. Chem. Soc. 128, 15637 (2006).
http://dx.doi.org/10.1021/ja063671r
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/5/10.1063/1.4942635
Loading
/content/aip/journal/aplmater/4/5/10.1063/1.4942635
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/5/10.1063/1.4942635
2016-02-23
2016-12-07

Abstract

We discuss our philosophy for implementation of the Materials Genome Initiative through an integrated materials design strategy, exemplified here in the context of electrocatalytic capture and separation of CO gas. We identify for a group of 1:1 X–N graphene analogue materials that electro-responsive switchable CO binding behavior correlates with a change in the preferred binding site from N to the adjacent X atom as negative charge is introduced into the system. A reconsideration of conductive N-doped graphene yields the discovery that the N-dopant is able to induce electrocatalytic binding of multiple CO molecules at the adjacent carbon sites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/5/1.4942635.html;jsessionid=eoJ1cKX4H5cicwvObRxBTNcH.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/5/10.1063/1.4942635&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/5/10.1063/1.4942635&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/5/10.1063/1.4942635'
Top,Right1,Right2,Right3,