Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Jahan, M. Ismail, S. Sapuan, and F. Mustapha, “Material screening and choosing methods—A review,” Mater. Des. 31, 696705 (2010).
2.R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, “Combinatorial and high-throughput screening of materials libraries: Review of state of the art,” ACS Comb. Sci. 13, 579633 (2011).
3.R. S. Bohacek, C. McMartin, and W. C. Guida, “The art and practice of structure-based drug design: A molecular modeling perspective,” Med. Res. Rev. 16, 350 (1996).<3::AID-MED1>3.0.CO;2-6
4.C. M. Dobson, “Chemical space and biology,” Nature 432, 824828 (2004).
5.C. Lipinski and A. Hopkins, “Navigating chemical space for biology and medicine,” Nature 432, 855861 (2004).
6.M. A. Koch, A. Schuffenhauer, M. Scheck, S. Wetzel, M. Casaulta, A. Odermatt, P. Ertl, and H. Waldmann, “Charting biologically relevant chemical space: A structural classification of natural products (SCONP),” Proc. Natl. Acad. Sci. U. S. A. 102, 1727217277 (2005).
7.P. M. Dean, Molecular Similarity in Drug Design (Springer Science and Business Media, 2012).
8.T. I. Oprea and J. Gottfries, “Chemography: The art of navigating in chemical space,” J. Comb. Chem. 3, 157166 (2001).
9.R. E. Newnham, Structure-Property Relations (Springer Science and Business Media, 2012), Vol. 2.
10.G. M. Maggiora, “On outliers and activity Cliffs why QSAR often disappoints,” J. Chem. Inf. Model. 46, 1535 (2006).
11.I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2005).
12.C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).
13.H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, Top500 supercomputing sites,2011.
14.S. H. Fuller and L. I. Millett, “Computing performance: Game over or next level?,” Computer 44, 3138 (2011).
15.M. Vendruscolo and C. M. Dobson, “Protein dynamics: Moore’s law in molecular biology,” Curr. Biol. 21, R68R70 (2011).
16.J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, and K. Burke, “Finding density functionals with machine learning,” Phys. Rev. Lett. 108, 253002 (2012).
17.M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld, “Fast and accurate modeling of molecular atomization energies with machine learning,” Phys. Rev. Lett. 108, 058301 (2012).
18.K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A. von Lilienfeld, A. Tkatchenko, and K.-R. Müller, “Assessment and validation of machine learning methods for predicting molecular atomization energies,” J. Chem. Theory Comput. 9, 34043419 (2013).
19.P.-G. De Gennes and J. Badoz, Fragile Objects: Soft Matter, Hard Science, and the Thrill of Discovery (Springer Science and Business Media, 2012).
20.T. Schlick, R. D. Skeel, A. T. Brunger, L. V. Kalé, J. A. Board, J. Hermans, and K. Schulten, “Algorithmic challenges in computational molecular biophysics,” J. Comput. Phys. 151, 948 (1999).
21.B. Palsson et al., “The challenges of in silico biology,” Nat. Biotechnol. 18, 11471150 (2000).
22.K. M. Merz and B. Roux, Biological Membranes: A Molecular Perspective from Computation and Experiment (Springer Science and Business Media, 2012).
23.R. O. Dror, R. M. Dirks, J. Grossman, H. Xu, and D. E. Shaw, “Biomolecular simulation: A computational microscope for molecular biology,” Ann. Rev. Biophys. 41, 429452 (2012).
24.T. J. Lane, D. Shukla, K. A. Beauchamp, and V. S. Pande, “To milliseconds and beyond: Challenges in the simulation of protein folding,” Curr. Opin. Struct. Biol. 23, 5865 (2013).
25.J. R. Perilla, B. C. Goh, C. K. Cassidy, B. Liu, R. C. Bernardi, T. Rudack, H. Yu, Z. Wu, and K. Schulten, “Molecular dynamics simulations of large macromolecular complexes,” Curr. Opin. Struct. Biol. 31, 6474 (2015).
26.S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. Hart, S. Sanvito, M. Buongiorno-Nardelli et al., “ A distributed materials properties repository from high-throughput ab initio calculations,” Comput. Mater. Sci. 58, 227235 (2012).
27.S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder, “Predicting crystal structures with data mining of quantum calculations,” Phys. Rev. Lett. 91, 135503 (2003).
28.B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, “Combinatorial screening for new materials in unconstrained composition space with machine learning,” Phys. Rev. B 89, 094104 (2014).
29.J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, “Computational high-throughput screening of electrocatalytic materials for hydrogen evolution,” Nat. Mater. 5, 909913 (2006).
30.M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989).
31.D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2014).
32.R. B. Best, N.-V. Buchete, and G. Hummer, “Are current molecular dynamics force fields too helical?,” Biophys. J. 95, L07L09 (2008).
33.K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O. Dror, and D. E. Shaw, “Systematic validation of protein force fields against experimental data,” PLoS One 7, e32131 (2012).
34.S. Piana, J. L. Klepeis, and D. E. Shaw, “Assessing the accuracy of physical models used in protein-folding simulations: Quantitative evidence from long molecular dynamics simulations,” Curr. Opin. Struct. Biol. 24, 98105 (2014).
35.A. Botan, F. Favela-Rosales, P. F. Fuchs, M. Javanainen, M. Kanduc, W. Kulig, A. Lamberg, C. Loison, A. Lyubartsev, M. S. Miettinen et al., “Toward atomistic resolution structure of phosphatidylcholine headgroup and glycerol backbone at different ambient conditions,” J. Phys. Chem. B 119, 1507515088 (2015).
36.C. Neale, W. D. Bennett, D. P. Tieleman, and R. Pomès, “Statistical convergence of equilibrium properties in simulations of molecular solutes embedded in lipid bilayers,” J. Chem. Theory Comput. 7, 41754188 (2011).
37.C. Kutzner, R. Apostolov, B. Hess, and H. Grubmüller, “Scaling of the gromacs 4.6 molecular dynamics code on superMUC,” in Advances in Parallel Computing (IOS Press, 2013), Vol. 25.
38.C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B. L. de Groot, and H. Grubmüller, “Best bang for your buck: GPU nodes for gromacs biomolecular simulations,” J. Comput. Chem. 36, 19902008 (2015).
39.A. C. Pan, D. W. Borhani, R. O. Dror, and D. E. Shaw, “Molecular determinants of drug–receptor binding kinetics,” Drug Discovery Today 18, 667673 (2013).
40.R. O. Dror, H. F. Green, C. Valant, D. W. Borhani, J. R. Valcourt, A. C. Pan, D. H. Arlow, M. Canals, J. R. Lane, R. Rahmani et al., “Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs,” Nature 503, 295299 (2013).
41.J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten, “GPU-accelerated molecular modeling coming of age,” J. Mol. Graphics Modell. 29, 116125 (2010).
42.R. B. Best, “Atomistic molecular simulations of protein folding,” Curr. Opin. Struct. Biol. 22, 5261 (2012).
43.V. A. Voelz, G. R. Bowman, K. Beauchamp, and V. S. Pande, “Molecular simulation of ab initio protein folding for a millisecond folder NTL9 (1-39),” J. Am. Chem. Soc. 132, 15261528 (2010).
44.J. D. Chodera and F. Noé, “Markov state models of biomolecular conformational dynamics,” Curr. Opin. Struct. Biol. 25, 135144 (2014).
45.N. Plattner and F. Noé, “Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models,” Nat. Commun. 6, 7653 (2015).
46.K. H. Bleicher, H.-J. Böhm, K. Müller, and A. I. Alanine, “Hit and lead generation: Beyond high-throughput screening,” Nat. Rev. Drug Discovery 2, 369378 (2003).
47.G. Schneider and U. Fechner, “Computer-based de novo design of drug-like molecules,” Nat. Rev. Drug Discovery 4, 649663 (2005).
48.G. M. Keserű and G. M. Makara, “Hit discovery and hit-to-lead approaches,” Drug Discovery Today 11, 741748 (2006).
49.E. Kerns and L. Di, Drug-Like Properties: Concepts, Structure Design and Methods: From ADME to Toxicity Optimization (Academic Press, 2010).
50.J. D. Chodera, D. L. Mobley, M. R. Shirts, R. W. Dixon, K. Branson, and V. S. Pande, “Alchemical free energy methods for drug discovery: Progress and challenges,” Curr. Opin. Struct. Biol. 21, 150160 (2011).
51.W. L. Jorgensen, “The many roles of computation in drug discovery,” Science 303, 18131818 (2004).
52.J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design (John Wiley & Sons, Inc., 1999).
53.G. Schneider, “Virtual screening: An endless staircase?,” Nat. Rev. Drug Discovery 9, 273276 (2010).
54.C. A. Lipinski, “Drug-like properties and the causes of poor solubility and poor permeability,” J. Pharmacol. Toxicol. Methods 44, 235249 (2000).
55.B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, and V. Pande, “Massively multitask networks for drug discovery,” e-print arXiv:1502.02072 (2015).
56.I. Buch, T. Giorgino, and G. De Fabritiis, “Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations,” Proc. Natl. Acad. Sci. U. S. A. 108, 1018410189 (2011).
57.D. W. Borhani and D. E. Shaw, “The future of molecular dynamics simulations in drug discovery,” J. Comput.-Aided Mol. Des. 26, 1526 (2012).
58.J. Mortier, C. Rakers, M. Bermudez, M. S. Murgueitio, S. Riniker, and G. Wolber, “The impact of molecular dynamics on drug design: Applications for the characterization of ligand–macromolecule complexes,” Drug Discovery Today 20, 686 (2015).
59.W. Sinko, S. Lindert, and J. A. McCammon, “Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design,” Chem. Biol. Drug Des. 81, 4149 (2013).
60.J. Wereszczynski and J. A. McCammon, “Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition,” Q. Rev. Biophys. 45, 125 (2012).
61.Y. Okamoto, “Generalized-ensemble algorithms: Enhanced sampling techniques for Monte Carlo and molecular dynamics simulations,” J. Mol. Graphics Modell. 22, 425439 (2004).
62.D. M. Zuckerman, “Equilibrium sampling in biomolecular simulation,” Ann. Rev. Biophys. 40, 41 (2011).
63.A. M. Ferrenberg and R. H. Swendsen, “Optimized Monte Carlo data analysis,” Phys. Rev. Lett. 63, 1195 (1989).
64.S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, “Multidimensional free-energy calculations using the weighted histogram analysis method,” J. Comput. Chem. 16, 13391350 (1995).
65.M. R. Shirts and J. D. Chodera, “Statistically optimal analysis of samples from multiple equilibrium states,” J. Chem. Phys. 129, 124105 (2008).
66.B. Roux, “The calculation of the potential of mean force using computer simulations,” Comput. Phys. Commun. 91, 275282 (1995).
67.J. D. Chodera, W. C. Swope, J. W. Pitera, and K. A. Dill, “Long-time protein folding dynamics from short-time molecular dynamics simulations,” Multiscale Model. Simul. 5, 12141226 (2006).
68.Y. Deng and B. Roux, “Computations of standard binding free energies with molecular dynamics simulations,” J. Phys. Chem. B 113, 22342246 (2009).
69.P. Nielaba, M. Mareschal, and G. Ciccotti, Bridging the Time Scales: Molecular Simulations for the Next Decade (Springer Science and Business Media, 2002), Vol. 605.
70.G. R. Bowman, V. S. Pande, and F. Noé, An Introduction to Markov State Models and their Application to Long Timescale Molecular Simulation (Springer Science and Business Media, 2013), Vol. 797.
71.J. L. MacCallum, A. Perez, and K. A. Dill, “Determining protein structures by combining semireliable data with atomistic physical models by Bayesian inference,” Proc. Natl. Acad. Sci. U. S. A. 112, 6985 (2015).
72.T. Bereau and K. Kremer, “Automated parametrization of the coarse-grained Martini force field for small organic molecules,” J. Chem. Theory Comput. 11, 27832791 (2015).
73.T. Bereau, D. Andrienko, and O. A. von Lilienfeld, “Transferable atomic multipole machine learning models for small organic molecules,” J. Chem. Theory Comput. 11, 32253233 (2015).
74.J. Behler and M. Parrinello, “Generalized neural-network representation of high-dimensional potential-energy surfaces,” Phys. Rev. Lett. 98, 146401 (2007).
75.J. Behler, “Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations,” Phys. Chem. Chem. Phys. 13, 1793017955 (2011).
76.Z. Li, J. R. Kermode, and A. De Vita, “Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces,” Phys. Rev. Lett. 114, 096405 (2015).
77.P. Gasparotto and M. Ceriotti, “Recognizing molecular patterns by machine learning: An agnostic structural definition of the hydrogen bond,” J. Chem. Phys. 141, 174110 (2014).
78.Z. D. Pozun, K. Hansen, D. Sheppard, M. Rupp, K.-R. Müller, and G. Henkelman, “Optimizing transition states via kernel-based machine learning,” J. Chem. Phys. 136, 174101 (2012).
79.R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann, S. Atahan-Evrenk, R. S. Sánchez-Carrera, L. Vogt, and A. Aspuru-Guzik, “Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics,” Energy Environ. Sci. 4, 48494861 (2011).
80.V. Rühle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, and D. Andrienko, “Microscopic simulations of charge transport in disordered organic semiconductors,” J. Chem. Theory Comput. 7, 33353345 (2011).
81.P. Kordt, J. J. M. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz, and D. Andrienko, “Modeling of organic light emitting diodes: From molecular to device properties,” Adv. Funct. Mater. 25, 19551971 (2015).
82.C. Poelking, K. Daoulas, A. Troisi, and D. Andrienko, “Morphology and charge transport in P3HT: A theorist’s perspective,” in P3HT Revisited—From Molecular Scale to Solar Cell Devices, Advances in Polymer Science Vol. 265, edited by S. Ludwigs (Springer, Berlin, Heidelberg, 2014), pp. 139180.
83.C. Poelking and D. Andrienko, “Design rules for organic donor-acceptor heterojunctions: Pathway for charge splitting and detrapping,” J. Am. Chem. Soc. 137, 63206326 (2015).
84.M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. L. Brabec, “Design rules for donors in bulk-heterojunction solar cells–Towards 10% energy-conversion efficiency,” Adv. Mater. 18, 789 (2006).
85.C. Poelking, M. Tietze, C. Elschner, S. Olthof, D. Hertel, B. Baumeier, F. Würthner, K. Meerholz, K. Leo, and D. Andrienko, “Impact of mesoscale order on open-circuit voltage in organic solar cells,” Nat. Mater. 14, 434439 (2014).
86.P. Deglmann, A. Schaefer, and C. Lennartz, “Application of quantum calculations in the chemical industry—An overview,” Int. J. Quantum Chem. 115, 107136 (2015).
87.Y. Unger, T. Strassner, and C. Lennartz, “Prediction of the emission wavelengths of metal-organic triplet emitters by quantum chemical calculations,” J. Organomet. Chem. 748, 6367 (2013).
88.F. May, M. Al-Helwi, B. Baumeier, W. Kowalsky, E. Fuchs, C. Lennartz, and D. Andrienko, “Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes,” J. Am. Chem. Soc. 134, 1381813822 (2012).

Data & Media loading...


Article metrics loading...



Soft matter embodies a wide range of materials, which all share the common characteristics of weak interaction energies determining their supramolecular structure. This complicates structure-property predictions and hampers the direct application of data-driven approaches to their modeling. We present several aspects in which these methods play a role in designing soft-matter materials: drug design as well as information-driven computer simulations, e.g., histogram reweighting. We also discuss recent examples of rational design of soft-matter materials fostered by physical insight and assisted by data-driven approaches. We foresee the combination of data-driven and physical approaches a promising strategy to move the field forward.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd