Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/5/10.1063/1.4943679
1.
1.P. Akcora, H. Liu, S. K. Kumar, J. Moll, Y. Li, B. C. Benicewicz, L. S. Schadler, D. Acehan, A. Z. Panagiotopoulos, and V. Pryamitsyn, Nat. Mater. 8(4), 354359 (2009).
http://dx.doi.org/10.1038/nmat2404
2.
2.A. Bansal, H. Yang, C. Li, K. Cho, B. C. Benicewicz, S. K. Kumar, and L. S. Schadler, Nat. Mater. 4(9), 693698 (2005).
http://dx.doi.org/10.1038/nmat1447
3.
3.Y. T. Liang, B. K. Vijayan, K. A. Gray, and M. C. Hersam, Nano Lett. 11(7), 28652870 (2011).
http://dx.doi.org/10.1021/nl2012906
4.
4.T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, and R. Ruoff, Nat. Nanotechnol. 3(6), 327331 (2008).
http://dx.doi.org/10.1038/nnano.2008.96
5.
5.P. Rittigstein, R. D. Priestley, L. J. Broadbelt, and J. M. Torkelson, Nat. Mater. 6(4), 278282 (2007).
http://dx.doi.org/10.1038/nmat1870
6.
6.S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442(7100), 282286 (2006).
http://dx.doi.org/10.1038/nature04969
7.
7.M. Yamazaki and Y. Xu, presented at the ASME 2009 Pressure Vessels and Piping Conference, 2009.
8.
8.S. Otsuka, I. Kuwajima, J. Hosoya, Y. Xu, and M. Yamazaki, presented at the 2011 International Conference on Emerging Intelligent Data and Web Technologies (EIDWT), 2011.
9.
9.See http://www.matweb.com for MatWeb; accessed December 2015.
10.
10.See http://www.grantadesign/products/mi for Granta MI, Cambridge, UK; accessed December 2015.
11.
11.See https://www.mgi.gov/ for Materials Genome Initiative. Accessed March 2016.
12.
12.A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, and G. Ceder, APL Mater. 1(1), 011002 (2013).
http://dx.doi.org/10.1063/1.4812323
13.
13.J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65(11), 15011509 (2013).
http://dx.doi.org/10.1007/s11837-013-0755-4
14.
14.See http://www.citrine.io for Citrine Informatics; accessed December 2015.
15.
15.F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, J. Compos. Mater. 40(17), 15111575 (2006).
http://dx.doi.org/10.1177/0021998306067321
16.
16.L. Schadler, L. Brinson, and W. Sawyer, JOM 59(3), 5360 (2007).
http://dx.doi.org/10.1007/s11837-007-0040-5
17.
17.H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method (Cambridge University Press, Cambridge, 2007).
18.
18.Nanomine available at http://nanomine.northwestern.edu (beta as of 17 February 2016).
19.
19.See https://github.com/usnistgov/MDCS for source code and documentation; accessed December 2015.
20.
20.S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web: From Relations to Semistructured Data and XML (Morgan Kaufmann, 2000).
21.
21.T. N. Bhat, L. M. Bartolo, U. R. Kattner, C. E. Campbell, and J. T. Elliott, JOM 67(8), 18661875 (2015).
http://dx.doi.org/10.1007/s11837-015-1487-4
22.
22.Z.-M. Dang, Y.-F. Yu, H.-P. Xu, and J. Bai, Compos. Sci. Technol. 68(1), 171177 (2008).
http://dx.doi.org/10.1016/j.compscitech.2007.05.021
23.
23.A. Dey, S. De, A. De, and S. De, Nanotechnology 15(9), 1277 (2004).
http://dx.doi.org/10.1088/0957-4484/15/9/028
24.
24.M. Fréchette, I. Preda, J. Castellon, A. Krivda, R. Veillette, M. Trudeau, and E. David, IEEE Trans. Dielectr. Electr. Insul. 21(2), 434443 (2014).
http://dx.doi.org/10.1109/tdei.2013.004164
25.
25.L. Gao, J. He, J. Hu, and Y. Li, J. Phys. Chem. C 118(2), 831838 (2014).
http://dx.doi.org/10.1021/jp409474k
26.
26.F. He, S. Lau, H. L. Chan, and J. Fan, Adv. Mater. 21(6), 710715 (2009).
http://dx.doi.org/10.1002/adma.200801758
27.
27.T. Hu, J. Juuti, H. Jantunen, and T. Vilkman, J. Eur. Ceram. Soc. 27(13), 39974001 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.082
28.
28.X. Huang, L. Xie, K. Yang, C. Wu, P. Jiang, S. Li, S. Wu, K. Tatsumi, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 21(2), 467479 (2014).
http://dx.doi.org/10.1109/TDEI.2013.004165
29.
29.L. Hui, L. S. Schadler, and J. Nelson, IEEE Trans. Dielectr. Electr. Insul. 20(2), 641653 (2013).
http://dx.doi.org/10.1109/tdei.2013.6508768
30.
30.J. Nelson and Y. Hu, J. Phys. D: Appl. Phys. 38(2), 213 (2005).
http://dx.doi.org/10.1088/0022-3727/38/2/005
31.
31.L. Qi, B. I. Lee, S. Chen, W. D. Samuels, and G. J. Exarhos, Adv. Mater. 17(14), 17771781 (2005).
http://dx.doi.org/10.1002/adma.200401816
32.
32.M. Roy, J. Nelson, R. MacCrone, L. S. Schadler, C. Reed, and R. Keefe, IEEE Trans. Dielectr. Electr. Insul. 12(4), 629643 (2005).
http://dx.doi.org/10.1109/TDEI.2005.1511089
33.
33.M. Roy, J. K. Nelson, R. MacCrone, and L. Schadler, J. Mater. Sci. 42(11), 37893799 (2007).
http://dx.doi.org/10.1007/s10853-006-0413-0
34.
34.L. S. Schadler, J. Nelson, C. Calebrese, A. Travelpiece, and D. L. Schweickart, IEEE Trans. Dielectr. Electr. Insul. 19(6), 20902101 (2012).
http://dx.doi.org/10.1109/TDEI.2012.6396969
35.
35.Y. Shen, Y. Lin, M. Li, and C. W. Nan, Adv. Mater. 19(10), 14181422 (2007).
http://dx.doi.org/10.1002/adma.200602097
36.
36.Y. Shen, Y. Lin, and C. W. Nan, Adv. Funct. Mater. 17(14), 24052410 (2007).
http://dx.doi.org/10.1002/adfm.200700200
37.
37.S. Siddabattuni, T. P. Schuman, and F. Dogan, ACS Appl. Mater. Interfaces 5(6), 19171927 (2013).
http://dx.doi.org/10.1021/am3030239
38.
38.S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul. 15(1), 1223 (2008).
http://dx.doi.org/10.1109/T-DEI.2008.4446732
39.
39.S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul. 16(2), 531542 (2009).
http://dx.doi.org/10.1109/TDEI.2009.4815189
40.
40.R. Smith, C. Liang, M. Landry, J. Nelson, and L. Schadler, IEEE Trans. Dielectr. Electr. Insul. 15(1), 187196 (2008).
http://dx.doi.org/10.1109/T-DEI.2008.4446750
41.
41.P. Thomas, K. Varughese, K. Dwarakanath, and K. Varma, Compos. Sci. Technol. 70(3), 539545 (2010).
http://dx.doi.org/10.1016/j.compscitech.2009.12.014
42.
42.V. Tomer, G. Polizos, E. Manias, and C. Randall, J. Appl. Phys. 108(7), 074116 (2010).
http://dx.doi.org/10.1063/1.3487275
43.
43.A. Travelpiece, J. Nelson, L. Schadler, and D. Schweickart, presented at the IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2009.
44.
44.L. Vescovo, M. Sangermano, R. Scarazzini, G. Kortaberria, and I. Mondragon, Macromol. Chem. Phys. 211(17), 19331939 (2010).
http://dx.doi.org/10.1002/macp.201000138
45.
45.S. Virtanen, T. M. Krentz, J. K. Nelson, L. S. Schadler, M. Bell, B. Benicewicz, H. Hillborg, and S. Zhao, IEEE Trans. Dielectr. Electr. Insul. 21(2), 563570 (2014).
http://dx.doi.org/10.1109/TDEI.2014.004415
46.
46.X. Wang, J. Nelson, L. Schadler, and H. Hillborg, IEEE Trans. Dielectr. Electr. Insul. 17(6), 16871696 (2010).
http://dx.doi.org/10.1109/TDEI.2010.5658218
47.
47.Z. Wang, J. K. Nelson, J. Miao, R. J. Linhardt, L. S. Schadler, H. Hillborg, and S. Zhao, IEEE Trans. Dielectr. Electr. Insul. 19(3), 960967 (2012).
http://dx.doi.org/10.1109/tdei.2012.6215100
48.
48.C. Wu, X. Huang, L. Xie, X. Wu, J. Yu, and P. Jiang, J. Mater. Chem. 21(44), 1772917736 (2011).
http://dx.doi.org/10.1039/c1jm12903a
49.
49.J. Xu, M. Wong, and C. Wong, presented at the 2004 Proceedings. 54th Electronic Components and Technology Conference, 2004.
50.
50.K. Yang, X. Huang, Y. Huang, L. Xie, and P. Jiang, Chem. Mater. 25(11), 23272338 (2013).
http://dx.doi.org/10.1021/cm4010486
51.
51.A. Zikry, Int. J. Polym. Mater. 57(4), 383395 (2008).
http://dx.doi.org/10.1080/00914030701729057
52.
52.I. Hassinger, X. Li, H. Zhao, H. Xu, Y. Huang, A. Prasad, L. Schadler, W. Chen, and L. C. Brinson, J. Mater. Sci. 51, 42384249 (2016).
http://dx.doi.org/10.1007/s10853-015-9698-1
53.
53.H. Xu, D. A. Dikin, C. Burkhart, and W. Chen, Comput. Mater. Sci. 85, 206216 (2014).
http://dx.doi.org/10.1016/j.commatsci.2013.12.046
54.
54.H. Xu, Y. Li, C. Brinson, and W. Chen, J. Mech. Des. 136(5), 051007 (2014).
http://dx.doi.org/10.1115/1.4026649
55.
55.C. M. Breneman, L. C. Brinson, L. S. Schadler, B. Natarajan, M. Krein, K. Wu, L. Morkowchuk, Y. Li, H. Deng, and H. Xu, Adv. Funct. Mater. 23(46), 57465752 (2013).
http://dx.doi.org/10.1002/adfm.201301744
56.
56.Y. Zhang, H. Zhao, I. Hassinger, L. C. Brinson, L. S. Schadler, and W. Chen, Integr. Mater. Manuf. Innovation 4(1), 126 (2015).
http://dx.doi.org/10.1186/s40192-015-0043-y
57.
57.S. Watcharotone, C. D. Wood, R. Friedrich, X. Chen, R. Qiao, K. Putz, and L. C. Brinson, Adv. Eng. Mater. 13(5), 400404 (2011).
http://dx.doi.org/10.1002/adem.201000277
58.
58.R. Qiao and L. C. Brinson, Compos. Sci. Technol. 69(3), 491499 (2009).
http://dx.doi.org/10.1016/j.compscitech.2008.11.022
59.
59.A. Selmi, C. Friebel, I. Doghri, and H. Hassis, Compos. Sci. Technol. 67(10), 20712084 (2007).
http://dx.doi.org/10.1016/j.compscitech.2006.11.016
60.
60.B. Natarajan, Y. Li, H. Deng, L. C. Brinson, and L. S. Schadler, Macromolecules 46(7), 28332841 (2013).
http://dx.doi.org/10.1021/ma302281b
61.
61.H. Zhao, Y. Li, Y. Huang, T. Krentz, L. S. Schadler, and L. C. Brinson, “Dielectric spectroscopy analysis using viscoelasticity-inspired relaxation theory with finite element modeling,” Compos. Sci. Technol. (submitted).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/5/10.1063/1.4943679
Loading
/content/aip/journal/aplmater/4/5/10.1063/1.4943679
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/5/10.1063/1.4943679
2016-03-15
2016-12-08

Abstract

Polymernanocomposites are a designer class of materials where nanoscale particles, functional chemistry, and polymer resin combine to provide materials with unprecedented combinations of physical properties. In this paper, we introduce NanoMine, a data-driven web-based platform for analysis and design of polymernanocomposite systems under the material genome concept. This open data resource strives to curate experimental and computational data on nanocomposite processing, structure, and properties, as well as to provide analysis and modeling tools that leverage curated data for material property prediction and design. With a continuously expanding dataset and toolkit, NanoMine encourages community feedback and input to construct a sustainable infrastructure that benefits nanocompositematerial research and development.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/5/1.4943679.html;jsessionid=ELZxHv8OsW8cYJCBWks_Zw1-.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/5/10.1063/1.4943679&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/5/10.1063/1.4943679&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/5/10.1063/1.4943679'
Top,Right1,Right2,Right3,