Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/5/10.1063/1.4944683
1.
1.E. B. Tadmor, R. S. Elliott, S. R. Phillpot, and S. B. Sinnott, “NSF cyberinfrastructures: A new paradigm for advancing materials simulation,” Curr. Opin. Solid State Mater. Sci. 17, 298304 (2013).
http://dx.doi.org/10.1016/j.cossms.2013.10.004
2.
2.B. G. Sumpter, R. K. Vasudevan, T. Potok, and S. V. Kalinin, “A bridge for accelerating materials by design,” npj Comput. Mater. 1, 15008 (2015).
http://dx.doi.org/10.1038/npjcompumats.2015.8
3.
3.G. B. Olson, “Designing a new material world,” Science 288, 993998 (2000).
http://dx.doi.org/10.1126/science.288.5468.993
4.
4.C. L. Magee, “Towards quantification of the role of materials innovation in overall technological development,” Complexity 18, 1025 (2012).
http://dx.doi.org/10.1002/cplx.20309
5.
5.J. A. Christodoulou, “Integrated computational materials engineering and materials genome initiative: Accelerating materials innovation,” Adv. Mater. Processes 171(3), 2831 (March 2013).
6.
6.T. W. Eagar, “Bringing new materials to market,” Technol. Rev. 98(2), 4249 (1995).
7.
7.C. O. Björling and A. Westgren, “Minerals of the Varuträsk pegmatite,” Geol. Foeren. Stockholm Foerh. 60, 6772 (1938).
http://dx.doi.org/10.1080/11035893809443985
8.
8.A. Padhi, K. Nanjundaswamya, and J. Goodenough, “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,” J. Electrochem. Soc. 144, 11881194 (1997).
http://dx.doi.org/10.1149/1.1837571
9.
9.G. Ceder, G. Hautier, A. Jain, and S. P. Ong, “Recharging lithium battery research with first-principles methods,” MRS Bull. 36, 185191 (2011).
http://dx.doi.org/10.1557/mrs.2011.31
10.
10.H. W. Meuer, E. Strohmaier, J. Dongarra, and H. D. Simon, The TOP500: History, Trends, and Future Directions in High Performance Computing (Chapman & Hall/CRC, 2014).
11.
11.R. O. Jones, “Density functional theory: Its origins, rise to prominence, and future,” Rev. Mod. Phys. 87, 897 (2015).
http://dx.doi.org/10.1103/revmodphys.87.897
12.
12.A. D. Becke, “Perspective: Fifty years of density-functional theory in chemical physics,” J. Chem. Phys. 140, 18A301 (2014).
http://dx.doi.org/10.1063/1.4869598
13.
13.A. Jain, Y. Shin, and K. A. Persson, “Computational predictions of energy materials using density functional theory,” Nat. Rev. Mater. 1, 15004 (2016).
http://dx.doi.org/10.1038/natrevmats.2015.4
14.
14.G. Hautier, A. Jain, and S. P. Ong, “From the computer to the laboratory: Materials discovery and design using first-principles calculations,” J. Mater. Sci. 47, 73177340 (2012).
http://dx.doi.org/10.1007/s10853-012-6424-0
15.
15.R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, “Combinatorial and high-throughput screening of materials libraries: Review of state of the art,” ACS Comb. Sci. 13, 579 (2011).
http://dx.doi.org/10.1021/co200007w
16.
16.J.-C. Zhao, “High-throughput experimental tools for the materials genome initiative,” Chin. Sci. Bull. 59, 16521661 (2014).
http://dx.doi.org/10.1007/s11434-014-0120-1
17.
17.J. Hattrick-Simpers, C. Wen, and J. Lauterbach, “The materials super highway: Integrating high-throughput experimentation into mapping the catalysis materials genome,” Catal. Lett. 145, 290298 (2014).
http://dx.doi.org/10.1007/s10562-014-1442-y
18.
18.S. Nemšák, A. Shavorskiy, O. Karslioglu, I. Zegkinoglou, A. Rattanachata, C. S. Conlon, A. Keqi, P. K. Greene, E. C. Burks, F. Salmassi, E. M. Gullikson, S. Yang, K. Liu, H. Bluhm, and C. S. Fadley, “Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission,” Nat. Commun. 5, 5441 (2014).
http://dx.doi.org/10.1038/ncomms6441
19.
19.D. S. Su, B. Zhang, and R. Schlögl, “Electron microscopy of solid catalysts—Transforming from a Challenge to a toolbox,” Chem. Rev. 115, 2818 (2015).
http://dx.doi.org/10.1021/cr500084c
20.
20.N. Balke, S. Jesse, A. N. Morozovska, E. Eliseev, D. W. Chung, Y. Kim, L. Adamczyk, R. E. García, N. Dudney, and S. V. Kalinin, “Nanoscale mapping of ion diffusion in a lithium-ion battery cathode,” Nat. Nanotechnol. 5, 749754 (2010).
http://dx.doi.org/10.1038/nnano.2010.174
21.
21.M. E. Holtz, Y. Yu, D. Gunceler, J. Gao, R. Sundararaman, K. A. Schwarz, T. A. Arias, H. D. Abruña, and D. A. Muller, “Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte,” Nano Lett. 14, 14531459 (2014).
http://dx.doi.org/10.1021/nl404577c
22.
22.P. Patel, “Materials genome initiative and energy,” MRS Bull. 36, 964966 (2011).
http://dx.doi.org/10.1557/mrs.2011.306
23.
23.J. Allison, “Integrated computational materials engineering: A perspective on progress and future steps,” JOM 63, 1518 (2011).
http://dx.doi.org/10.1007/s11837-011-0053-y
24.
24.National Science and Technology Council, Materials Genome Initiative Strategic Plan (National Science and Technology Council, 2014), available at https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf.
25.
25.A. White, “The materials genome initiative: One year on,” MRS Bull. 37, 715716 (2012).
http://dx.doi.org/10.1557/mrs.2012.194
26.
26.A. A. White, “Universities prepare next-generation workforce to benefit from the materials genome initiative,” MRS Bull. 38, 673674 (2013).
http://dx.doi.org/10.1557/mrs.2013.221
27.
27.G. B. Olson and C. J. Kuehmann, “Materials genomics: From CALPHAD to flight,” Scr. Mater. 70, 2530 (2014).
http://dx.doi.org/10.1016/j.scriptamat.2013.08.032
28.
28.A. A. White, “Interdisciplinary collaboration, robust funding cited as key to success of materials genome initiative program,” MRS Bull. 38, 894896 (2013).
http://dx.doi.org/10.1557/mrs.2013.272
29.
29.A. White, “Workshop makes recommendations to increase diversity in materials science and engineering,” MRS Bull. 38, 120122 (2013).
http://dx.doi.org/10.1557/mrs.2013.32
30.
30.L. Glasser, “Crystallographic information resources,” J. Chem. Educ. 93, 542 (2015).
http://dx.doi.org/10.1021/acs.jchemed.5b00253
31.
31.Y. Le Page, “Data mining in and around crystal structure databases,” MRS Bull. 31, 991 (2006).
http://dx.doi.org/10.1557/mrs2006.226
32.
32.J. Faber and T. Fawcett, “The powder diffraction file: Present and future,” Acta Crystallogr., Sect. B: Struct. Sci. 58, 325332 (2002).
http://dx.doi.org/10.1107/S0108768102003312
33.
33.C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen, “FactSage thermochemical software and databases—Recent developments,” Calphad 33, 295311 (2009).
http://dx.doi.org/10.1016/j.calphad.2008.09.009
34.
34.P. J. Linstrom and W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2013.
35.
35.M. W. Chase and J. A. N. A. Force, NIST-JANAF thermochemical tables, 1998.
36.
36.O. Kubaschewski, C. Alcock, and P. Spencer, Materials Thermochemistry, 6th ed. (Pergamom Press, Oxford, 1993).
37.
37.T. B. Massalski and H. Okamoto, Binary Alloy Phase Diagrams, 2nd ed. (ASM International, 1990).
38.
38.C. E. Campbell, U. R. Kattner, and Z. K. Liu, “File and data repositories for next generation CALPHAD,” Scr. Mater. 70, 711 (2014).
http://dx.doi.org/10.1016/j.scriptamat.2013.06.013
39.
39.L. Kaufman and J. Ågren, “CALPHAD, first and second generation—Birth of the materials genome,” Scr. Mater. 70, 36 (2014).
http://dx.doi.org/10.1016/j.scriptamat.2012.12.003
40.
40.A. A. White, “Mandates for public access to publications and data on the horizon for US researchers,” MRS Bull. 38, 531532 (2013).
http://dx.doi.org/10.1557/mrs.2013.168
41.
41.J. R. Kitchin, “Data sharing in surface science,” Surf. Sci. (published online 2015).
http://dx.doi.org/10.1016/j.susc.2015.05.007
42.
42.J. R. Kitchin, “Examples of effective data sharing in scientific publishing,” ACS Catal. 5, 38943899 (2015).
http://dx.doi.org/10.1021/acscatal.5b00538
43.
43.D. Guevarra, A. Shinde, S. K. Suram, I. D. Sharp, F. Toma, J. A. Haber, and J. Gregoire, “Development of solar fuels photoanodes through combinatorial integration of Ni-La-Co-Ce oxide catalysts on BiVO4,” Energy Environ. Sci. 9, 565 (2015).
http://dx.doi.org/10.1039/C5EE03488D
44.
44.L. Cheng, R. S. Assary, X. Qu, A. Jain, S. P. Ong, N. N. Rajput, K. A. Persson, and L. A. Curtiss, “Accelerating electrolyte discovery for energy storage by high throughput screening,” J. Phys. Chem. Lett. 6, 283291 (2015).
http://dx.doi.org/10.1021/jz502319n
45.
45.X. Qu, A. Jain, N. N. Rajput, L. Cheng, Y. Zhang, S. P. Ong, M. Brafman, E. Maginn, L. A. Curtiss, and K. A. Persson, “The electrolyte genome project: A big data approach in battery materials discovery,” Comput. Mater. Sci. 103, 5667 (2015).
http://dx.doi.org/10.1016/j.commatsci.2015.02.050
46.
46.S. K. Suram, J. A. Haber, J. Jin, and J. M. Gregoire, “Generating information rich high-throughput experimental materials genomes using functional clustering via multi-tree genetic programming and information theory,” ACS Comb. Sci. 17, 224233 (2015).
http://dx.doi.org/10.1021/co5001579
47.
47.L. Lin, “Materials databases infrastructure constructed by first principles calculations: A review,” Mater. Perform. Charact. 4, MPC20150014 (2015).
http://dx.doi.org/10.1520/MPC20150014
48.
48.A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The materials project: A materials genome approach to accelerating materials innovation,” APL Mater. 1, 011002 (2013).
http://dx.doi.org/10.1063/1.4812323
49.
49.S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, “AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations,” Comput. Mater. Sci. 58, 227235 (2012).
http://dx.doi.org/10.1016/j.commatsci.2012.02.002
50.
50.J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, “Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD),” JOM 65, 15011509 (2013).
http://dx.doi.org/10.1007/s11837-013-0755-4
51.
51.M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. K. Ande, S. Van Der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson, and M. Asta, “Charting the complete elastic properties of inorganic crystalline compounds,” Sci. Data 2, 150009 (2015).
http://dx.doi.org/10.1038/sdata.2015.9
52.
52.M. de Jong, W. Chen, H. Geerlings, M. Asta, and K. A. Persson, “A database to enable discovery and design of piezoelectric materials,” Sci. Data 2, 150053 (2015).
http://dx.doi.org/10.1038/sdata.2015.53
53.
53.G. Yuan and F. Gygi, “ESTEST: A framework for the validation and verification of electronic structure codes,” Comput. Sci. Discovery 3, 015004 (2010).
http://dx.doi.org/10.1088/1749-4699/3/1/015004
54.
54.See http://nomad-repository.eu/cms/ for the NoMaD repository.
55.
55.A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson, G. Ceder, S. Ping Ong, C. C. Fischer, T. Mueller, K. A. Persson, and G. Ceder, “A high-throughput infrastructure for density functional theory calculations,” Comput. Mater. Sci. 50, 22952310 (2011).
http://dx.doi.org/10.1016/j.commatsci.2011.02.023
56.
56.W. Setyawan and S. Curtarolo, “High-throughput electronic band structure calculations: Challenges and tools,” Comput. Mater. Sci. 49, 299312 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.05.010
57.
57.C. E. Calderon, J. J. Plata, C. Toher, C. Oses, O. Levy, M. Fornari, A. Natan, M. J. Mehl, G. Hart, M. B. Nardelli, and S. Curtarolo, “The AFLOW standard for high-throughput materials science calculations,” Comput. Mater. Sci. 108, 233238 (2015).
http://dx.doi.org/10.1016/j.commatsci.2015.07.019
58.
58.M. W. Penninger, C. H. Kim, L. T. Thompson, and W. F. Schneider, “DFT analysis of NO oxidation intermediates on undoped and doped LaCoO3 perovskite,” J. Phys. Chem. C 119, 2048820494 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b06351
59.
59.Y. Zhu, X. He, and Y. Mo, “First principles study on electrochemical and chemical stability of the solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries,” J. Mater. Chem. A 4, 3253 (2015).
http://dx.doi.org/10.1039/C5TA08574H
60.
60.Y. Zhu, X. He, and Y. Mo, “Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first principles calculations,” ACS Appl. Mater. Interfaces 7, 23658 (2015).
http://dx.doi.org/10.1021/acsami.5b07517
61.
61.A. Narayan, A. Bhutani, S. Rubeck, J. N. Eckstein, D. P. Shoemaker, and L. K. Wagner, “Computational and experimental investigation of unreported transition metal selenides and sulphides,” e-print arXiv:1512.02214 [cond-mat.mtrl-sci] (2015).
62.
62.M. Burbano, M. Duttine, O. Borkiewicz, A. Wattiaux, A. Demourgues, M. Salanne, H. Groult, and D. Dambournet, “Anionic ordering and thermal properties of FeF3 center dot 3H2O,” Inorg. Chem. 54, 96199625 (2015).
http://dx.doi.org/10.1021/acs.inorgchem.5b01705
63.
63.R. Sarmiento-Pérez, T. F. T. Cerqueira, S. Körbel, S. Botti, and M. A. L. Marques, “Prediction of stable nitride perovskites,” Chem. Mater. 27, 59575963 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b02026
64.
64.I. Jandl, H. Ipser, and K. W. Richter, “Thermodynamic modelling of the general NiAs-type structure: A study of first principle energies of formation for binary Ni-containing B8 compounds,” Calphad 50, 174181 (2015).
http://dx.doi.org/10.1016/j.calphad.2015.06.006
65.
65.E. B. Tadmor, R. S. Elliott, J. P. Sethna, R. E. Miller, and C. A. Becker, “The potential of atomistic simulations and the knowledge base of interatomic models,” J. Mater. 63, 17 (2011).
http://dx.doi.org/10.1007/s11837-011-0102-6
66.
66.C. A. Becker, F. Tavazza, Z. T. Trautt, R. A. Buarque, and D. Macedo, “Considerations for choosing and using force fields and interatomic potentials in materials science and engineering,” Curr. Opin. Solid State Mater. Sci. 17, 277283 (2013).
http://dx.doi.org/10.1016/j.cossms.2013.10.001
67.
67.G. P. Purja Pun, K. A. Darling, L. J. Kecskes, and Y. Mishin, “Angular-dependent interatomic potential for the Cu–Ta system and its application to structural stability of nano-crystalline alloys,” Acta Mater. 100, 377391 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.08.052
68.
68.M. A. Gibson and C. A. Schuh, “A survey of ab-initio calculations shows that segregation-induced grain boundary embrittlement is predicted by bond-breaking arguments,” Scr. Mater. 113, 5558 (2016).
http://dx.doi.org/10.1016/j.scriptamat.2015.09.041
69.
69.J. Allison, D. Backman, and L. Christodoulou, “Integrated computational materials engineering: A new paradigm for the global materials profession,” JOM 58, 2527 (2006).
http://dx.doi.org/10.1007/s11837-006-0223-5
70.
70.G. I. Miletic and A. Drašner, “DFT study of the cohesive and structural properties of Y Ni5Hx compounds,” J. Alloys Compd. 622, 10411048 (2015).
http://dx.doi.org/10.1016/j.jallcom.2014.10.106
71.
71.I. Valencia-Jaime, R. Sarmiento-Pérez, S. Botti, M. A. L. Marques, M. Amsler, S. Goedecker, and A. H. Romero, “Novel crystal structures for lithium–silicon alloy predicted by minima hopping method,” J. Alloys Compd. 655, 147154 (2016).
http://dx.doi.org/10.1016/j.jallcom.2015.09.101
72.
72.R. Sarmiento-Pérez, S. Botti, and M. A. L. Marques, “Optimized exchange and correlation semilocal functional for the calculation of energies of formation,” J. Chem. Theory Comput. 11, 38443850 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00529
73.
73.T. S. Jauho, T. Olsen, T. Bligaard, and K. S. Thygesen, “Improved description of metal oxide stability: Beyond the random phase approximation with renormalized kernels,” Phys. Rev. B 92, 115140 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.115140
74.
74.V. S. Kandagal, M. D. Bharadwaj, and U. V. Waghmare, “Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12,” J. Mater. Chem. A 3, 12992 (2015).
http://dx.doi.org/10.1039/C5TA01616A
75.
75.G. M. Dongho Nguimdo and D. P. Joubert, “A density functional (PBE, PBEsol, HSE06) study of the structural, electronic and optical properties of the ternary compounds AgAlX2 (X = S, Se, Te),” Eur. Phys. J. B 88, 113 (2015).
http://dx.doi.org/10.1140/epjb/e2015-50478-x
76.
76.M. C. Troparevsky, J. R. Morris, M. Daene, Y. Wang, A. R. Lupini, and G. M. Stocks, “Beyond atomic sizes and Hume-Rothery rules: Understanding and predicting high-entropy alloys,” JOM 67, 23502363 (2015).
http://dx.doi.org/10.1007/s11837-015-1594-2
77.
77.S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, “Python materials genomics (pymatgen): A robust, open-source python library for materials analysis,” Comput. Mater. Sci. 68, 314319 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
78.
78.I. E. Castelli, D. D. Landis, K. S. Thygesen, S. Dahl, I. Chorkendorff, T. F. Jaramillo, and K. W. Jacobsen, “New cubic perovskites for single-and two-photon water splitting using the computational materials repository,” Energy Environ. Sci. 5, 9034 (2012).
http://dx.doi.org/10.1039/c2ee22341d
79.
79.I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, “Computational screening of perovskite metal oxides for optimal solar light capture,” Energy Environ. Sci. 5, 5814 (2012).
http://dx.doi.org/10.1039/c1ee02717d
80.
80.T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, S. Li, M. Asta, N. Mathews, and S. G. Mhaisalkar, “Lead-free germanium iodide perovskite materials for photovoltaic application,” J. Mater. Chem. A 3, 2382923832 (2015).
http://dx.doi.org/10.1039/C5TA05741H
81.
81.Z. R. Liu and D. Y. Li, “Stability and formation of long period stacking order structure in Mg-based ternary alloys,” Comput. Mater. Sci. 103, 9096 (2015).
http://dx.doi.org/10.1016/j.commatsci.2015.03.008
82.
82.R. Sarmiento-Pérez, T. F. T. Cerqueira, I. Valencia-Jaime, M. Amsler, S. Goedecker, A. H. Romero, S. Botti, and M. A. L. Marques, “Novel phases of lithium-aluminum binaries from first-principles structural search,” J. Chem. Phys. 142, 024710 (2015).
http://dx.doi.org/10.1063/1.4905141
83.
83.Z.-H. Cai, P. Narang, H. A. Atwater, S. Chen, C.-G. Duan, Z.-Q. Zhu, and J.-H. Chu, “Cation-mutation design of quaternary nitride semiconductors lattice-matched to GaN,” Chem. Mater. 27, 7757 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b03536
84.
84.K. Choudhary, T. Liang, K. Mathew, B. Revard, A. Chernatynskiy, S. R. Phillpot, R. G. Hennig, and S. B. Sinnott, “Dynamical properties of AlN nanostructures and heterogeneous interfaces predicted using COMB potentials,” Comput. Mater. Sci. 113, 8087 (2016).
http://dx.doi.org/10.1016/j.commatsci.2015.11.025
85.
85.M. Pandey, A. Vojvodic, K. S. Thygesen, and K. W. Jacobsen, “Two-dimensional metal dichalcogenides and oxides for hydrogen evolution: A computational screening approach,” J. Phys. Chem. Lett. 9, 15771585 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00353
86.
86.D. Sun, Q. Hu, J. Chen, X. Zhang, L. Wang, Q. Wu, and A. Zhou, “Structural transformation of MXene (V 2C, Cr2C, and Ta2C) with O groups during lithiation: A first principles investigation,” ACS Appl. Mater. Interfaces 8, 74 (2015).
http://dx.doi.org/10.1021/acsami.5b03863
87.
87.F. Gschwind, G. Rodriguez-Garcia, D. J. S. Sandbeck, A. Gross, M. Weil, M. Fichtner, and N. Hörmann, “Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes,” J. Fluorine Chem. 182, 7690 (2016).
http://dx.doi.org/10.1016/j.jfluchem.2015.12.002
88.
88.W. T. Hong, R. E. Welsch, and Y. Shao-Horn, “Descriptors of oxygen-evolution activity for oxides: A statistical evaluation,” J. Phys. Chem. C 120, 7886 (2016).
http://dx.doi.org/10.1021/acs.jpcc.5b10071
89.
89.A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, and I. Tanaka, “Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization,” Phys. Rev. Lett. 115, 205901 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.205901
90.
90.T. Tada, S. Takemoto, S. Matsuishi, and H. Hosono, “High-throughput ab initio screening for two-dimensional electride materials,” Inorg. Chem. 53, 10347 (2014).
http://dx.doi.org/10.1021/ic501362b
91.
91.M. J. Young, M. Neuber, A. C. Cavanagh, H. Sun, C. B. Musgrave, and S. M. George, “Sodium charge storage in thin films of MnO2 derived by electrochemical oxidation of MnO atomic layer deposition films,” J. Electrochem. Soc. 162, A2753A2761 (2015).
http://dx.doi.org/10.1149/2.0671514jes
92.
92.J. C. Weber, P. T. Blanchard, A. W. Sanders, J. C. Gertsch, S. M. George, S. Berweger, A. Imtiaz, K. J. Coakley, T. M. Wallis, K. A. Bertness, P. Kabos, N. A. Sanford, and V. M. Bright, “GaN nanowire coated with atomic layer deposition of tungsten: A probe for near-field scanning microwave microscopy,” Nanotechnology 25, 415502 (2014).
http://dx.doi.org/10.1088/0957-4484/25/41/415502
93.
93.T. T. Tran and M. N. Obrovac, “Alloy negative electrodes for high energy density metal-ion cells,” J. Electrochem. Soc. 158, A1411 (2011).
http://dx.doi.org/10.1149/2.083112jes
94.
94.M. Yin, J. Hasier, and P. Nash, “A review of phase equilibria in Heusler alloy systems containing Fe, Co or Ni,” J. Mater. Sci. 51, 5070 (2015).
http://dx.doi.org/10.1007/s10853-015-9389-y
95.
95.M. Yin, P. Nash, W. Chen, and S. Chen, “Standard enthalpies of formation of selected Ni2Y Z Heusler compounds,” J. Alloys Compd. 660, 258265 (2016).
http://dx.doi.org/10.1016/j.jallcom.2015.11.126
96.
96.M. Yin and P. Nash, “Intermetallics enthalpies of formation of selected Pd2Y Z Heusler compounds,” Intermetallics 58, 1519 (2015).
http://dx.doi.org/10.1016/j.intermet.2014.10.019
97.
97.M. Yin and P. Nash, “Standard enthalpies of formation of selected Ru2Y Z Heusler compounds,” J. Alloys Compd. 634, 7074 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.02.089
98.
98.M. Yin and P. Nash, “Standard enthalpies of formation of selected XYZ half-Heusler compounds,” J. Chem. Thermodyn. 91, 17 (2015).
http://dx.doi.org/10.1016/j.jct.2015.07.016
99.
99.K. He, Y. Zhou, P. Gao, L. Wang, N. Pereira, G. G. Amatucci, K. W. Nam, X. Q. Yang, Y. Zhu, F. Wang, and D. Su, “Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries,” ACS Nano 8, 72517259 (2014).
http://dx.doi.org/10.1021/nn502284y
100.
100.A. J. Martinolich and J. R. Neilson, “Pyrite formation via kinetic intermediates through low-temperature solid-state metathesis,” J. Am. Chem. Soc. 136, 1565415659 (2014).
http://dx.doi.org/10.1021/ja5081647
101.
101.R. D. Bayliss, S. N. Cook, D. O. Scanlon, S. Fearn, J. Cabana, C. Greaves, J. A. Kilner, and S. J. Skinner, “Understanding the defect chemistry of alkali metal strontium silicate solid solutions: Insights from experiment and theory,” J. Mater. Chem. A 2, 1791917924 (2014).
http://dx.doi.org/10.1039/C4TA04299A
102.
102.B. Rousseau, V. Timoshevskii, N. Mousseau, M. Côté, and K. Zaghib, “A novel intercalation cathode material for sodium-based batteries,” Electrochem. Commun. 52, 912 (2015).
http://dx.doi.org/10.1016/j.elecom.2014.12.022
103.
103.L. MacEachern, R. A. Dunlap, and M. N. Obrovac, “A combinatorial investigation of Fe-Si-Zn thin film negative electrodes for Li-ion batteries,” J. Electrochem. Soc. 162, A229A234 (2014).
http://dx.doi.org/10.1149/2.1051501jes
104.
104.T. Nagase and Y. Umakoshi, “Amorphous phase formation in Co–Cu–Zr–B-based immiscible alloys,” J. Alloys Compd. 649, 11741181 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.07.229
105.
105.Z. Du, T. D. Hatchard, R. A. Dunlap, and M. N. Obrovac, “Combinatorial investigations of Ni-Si negative electrode materials for Li-ion batteries,” J. Electrochem. Soc. 162, A1858A1863 (2015).
http://dx.doi.org/10.1149/2.0731509jes
106.
106.M. Fondell, T. J. Jacobsson, M. Boman, and T. Edvinsson, “Optical quantum confinement in low dimensional hematite,” J. Mater. Chem. A 2, 3352 (2014).
http://dx.doi.org/10.1039/c3ta14846g
107.
107.A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density functional theory,” Science 321, 792794 (2008).
http://dx.doi.org/10.1126/science.1158722
108.
108.S. P. Ong, S. Cholia, A. Jain, M. Brafman, D. Gunter, G. Ceder, and K. A. Persson, “The materials application programming interface (API): A simple, flexible and efficient API for materials data based on representational state transfer (REST) principles,” Comput. Mater. Sci. 97, 209215 (2015).
http://dx.doi.org/10.1016/j.commatsci.2014.10.037
109.
109.P. Huck, D. Gunter, S. Cholia, D. Winston, A. T. N’Diaye, and K. Persson, “User applications driven by the community contribution framework MPContribs in the materials project,” Concurr. Comput. Pract. Exp. (published online 2015).
http://dx.doi.org/10.1002/cpe.3698
110.
110.P. Huck, A. Jain, D. Gunter, D. Winston, and K. Persson, “A community contribution framework for sharing materials data with materials project,” in IEEE 11th International Conference on e-Science (IEEE, 2015).
111.
111.S. R. Hall, F. H. Allen, and I. D. Brown, “The crystallographic information file (CIF): A new standard archive file for crystallography,” Acta Crystallogr., Sect. A: Found. Crystallogr. 47, 655 (1991).
http://dx.doi.org/10.1107/s010876739101067x
112.
112.M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An overview of the HDF5 technology suite and its applications,” in Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases (AD’11) (ACM, 2011), pp. 3647.
http://dx.doi.org/10.1145/1966895.1966900
113.
113.R. Rew and G. Davis, “NetCDF: An interface for scientific data access,” IEEE Comput. Graphics Appl. 10, 7682 (1990).
http://dx.doi.org/10.1109/38.56302
114.
114.T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible markup language (XML),” World Wide Web J. 2, 2766 (1997).
115.
115.D. Crockford, “The application/json media type for javascript object notation (json),” RFC 7159, 2006.
116.
116.P. Murray-Rust, H. S. Rzepa, and M. Wright, “Development of chemical markup language (CML) as a system for handling complex chemical content,” New J. Chem. 25, 618634 (2001).
http://dx.doi.org/10.1039/b008780g
117.
117.J. G. Kaufman and E. F. Begley, “MatML: A data interchange markup language,” Adv. Mater. Process. 161, 3539 (2003).
118.
118.See http://www.mongodb.org for MongoDB, I. MongoDB.
119.
119.R. T. Fielding, Architectural Styles and the Design of Network-based Software Architectures (University of California, Irvine, 2000).
120.
120.G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
121.
121.See http://www.citrination.com Citrine Informatics Citrination materials search platform.
122.
122.See http://citrine.io/mif for Citrine Informatics MIF Schema.
123.
123.H. E. Pence and A. Williams, “ChemSpider: An online chemical information resource,” J. Chem. Educ. 87, 11231124 (2010).
http://dx.doi.org/10.1021/ed100697w
124.
124.J. A. Warren and R. F. Boisvert, “Building the materials innovation infrastructure: Data and standards,” NIST Report No. NISTIR 7898, 2012.
http://dx.doi.org/10.6028/NIST.IR.7898
125.
125.C. H. Ward, J. A. Warren, and R. J. Hanisch, “Making materials science and engineering data more valuable research products,” Integr. Mater. Manuf. Innovation 3, 22 (2014).
http://dx.doi.org/10.1186/s40192-014-0022-8
126.
126.T. N. Bhat, L. M. Bartolo, U. R. Kattner, C. E. Campbell, and J. T. Elliott, “Strategy for extensible, evolving terminology for the materials genome initiative efforts,” JOM 67, 18661875 (2015).
http://dx.doi.org/10.1007/s11837-015-1487-4
127.
127.M. W. Gaultois, T. D. Sparks, C. K. H. Borg, R. Seshadri, W. D. Bonificio, and D. R. Clarke, “Data-driven review of thermoelectric materials: Performance and resource considerations,” Chem. Mater. 25, 2911 (2013).
http://dx.doi.org/10.1021/cm400893e
128.
128.P. Gorai, D. Gao, B. Ortiz, S. Miller, S. A. Barnett, T. Mason, Q. Lv, V. Stevanović, and E. S. Toberer, “TE design lab: A virtual laboratory for thermoelectric material design,” Comput. Mater. Sci. 112, 368376 (2016).
http://dx.doi.org/10.1016/j.commatsci.2015.11.006
129.
129.G. Hautier, S. S. P. Ong, A. Jain, C. C. J. Moore, and G. Ceder, “Accuracy of density functional theory in predicting reaction energies from binary to ternary oxides and its implication on phase stability,” Phys. Rev. B 75, 155208 (2011).
http://dx.doi.org/10.1103/PhysRevB.85.155208
130.
130.A. Jain, G. Hautier, S. P. Ong, C. J. Moore, C. C. Fischer, K. A. Persson, and G. Ceder, “Formation enthalpies by mixing GGA and GGA + U calculations,” Phys. Rev. B 84, 045115 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045115
131.
131.S. Grindy, B. Meredig, S. Kirklin, J. E. Saal, and C. Wolverton, “Approaching chemical accuracy with density functional calculations: Diatomic energy corrections,” Phys. Rev. B 87, 075150 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075150
132.
132.V. Stevanovi, X. Zhang, and A. Zunger, “Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies (FERE),” Phys. Rev. B 85, 115104 (2011).
http://dx.doi.org/10.1103/physrevb.85.115104
133.
133.S. Lany, “Semiconductor thermochemistry in density functional calculations,” Phys. Rev. B 78, 18 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.245207
134.
134.R. van Noorden, “Interdisciplinary research by the numbers,” Nature 525, 306 (2015).
http://dx.doi.org/10.1038/525306a
135.
135.A. A. White, “Big data are shaping the future of materials science,” MRS Bull. 38, 594595 (2013).
http://dx.doi.org/10.1557/mrs.2013.187
136.
136.S. R. Kalidindi and M. De Graef, “Materials data science: Current status and future outlook,” Annu. Rev. Mater. Res. 45, 171193 (2015).
http://dx.doi.org/10.1146/annurev-matsci-070214-020844
137.
137.V. Marx, “The big challenges of big data,” Nature 498, 255260 (2013).
http://dx.doi.org/10.1038/498255a
138.
138.M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster, “Swift: A language for distributed parallel scripting,” Parallel Comput. 37, 633652 (2011).
http://dx.doi.org/10.1016/j.parco.2011.05.005
139.
139.G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, “AiiDA: Automated interactive infrastructure and database for computational science,” Comput. Mater. Sci. 111, 218 (2016).
http://dx.doi.org/10.1016/j.commatsci.2015.09.013
140.
140.A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and K. A. Persson, “FireWorks: A dynamic workflow system designed for high-throughput applications,” Concurr. Comput. Pract. Exp. 27, 5037 (2015).
http://dx.doi.org/10.1002/cpe.3505
141.
141.Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach. Learn. 2, 1 (2009).
http://dx.doi.org/10.1561/2200000006
142.
142.L. Deng and D. Yu, “Deep learning: Methods and applications,” Found. Trends Signal Process. 7, 197387 (2013).
http://dx.doi.org/10.1136/bmj.319.7209.0a10.1561/2000000039
143.
143.B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learning through probabilistic program induction,” Science 350, 13321338 (2015).
http://dx.doi.org/10.1126/science.aab3050
144.
144.K. Rajan, “Materials informatics,” Mater. Today 8, 3548 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)71123-8
145.
145.G. Mulholland and B. Meredig, “Hackathon aims to solve materials problems,” MRS Bull. 40, 166167 (2015).
http://dx.doi.org/10.1557/mrs.2015.8010.1557/mrs.2015.19
146.
146.A. White, “Federal agencies announce materials data challenge,” MRS Bull. 40, 906907 (2015).
http://dx.doi.org/10.1557/mrs.2015.291
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/5/10.1063/1.4944683
Loading
/content/aip/journal/aplmater/4/5/10.1063/1.4944683
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/5/10.1063/1.4944683
2016-03-24
2016-12-11

Abstract

Materials innovations enable new technological capabilities and drive major societal advancements but have historically required long and costly development cycles. The Materials Genome Initiative (MGI) aims to greatly reduce this time and cost. In this paper, we focus on data reuse in the MGI and, in particular, discuss the impact of three different computational databases based on density functional theory methods to the research community. We also discuss and provide recommendations on technical aspects of data reuse, outline remaining fundamental challenges, and present an outlook on the future of MGI’s vision of data sharing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/5/1.4944683.html;jsessionid=CXEbezlWf4Zk3WlqG93LxNsJ.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/5/10.1063/1.4944683&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/5/10.1063/1.4944683&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/5/10.1063/1.4944683'
Top,Right1,Right2,Right3,