Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/5/10.1063/1.4946894
1.
1.Materials Genome Initiative for Global Competitiveness, OSTP, June 2011.
2.
2.T. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery (Microsoft Research, 2009).
3.
3.Materials Genome Initiative Strategic Plan, National Science and Technology Council Committee on Technology Subcommittee on the Materials Genome Initiative, June 2014.
4.
4.C. H. Ward, J. A. Warren, and R. J. Hanisch, “Making materials science and engineering data more valuable research products,” Integr. Mater. Manuf. Innovation 3, 117 (2014).
http://dx.doi.org/10.1186/s40192-014-0022-8
5.
5.A. A. White, “Big data are shaping the future of materials science,” MRS Bull. 38, 594595 (2013).
http://dx.doi.org/10.1557/mrs.2013.187
6.
6.S. R. Kalidindi and M. D. Graef, “Materials data science: Current status and future outlook,” Annu. Rev. Mater. Res. 45, 171193 (2015).
http://dx.doi.org/10.1146/annurev-matsci-070214-020844
7.
7.K. Rajan, “Materials informatics: The materials ‘gene’ and big data,” Annu. Rev. Mater. Res. 45, 153169 (2015).
http://dx.doi.org/10.1146/annurev-matsci-070214-021132
8.
8.G. B. Olson, “Computational design of hierarchically structured materials,” Science 277, 12371242 (1997).
http://dx.doi.org/10.1126/science.277.5330.1237
9.
9.A. Agrawal, P. D. Deshpande, A. Cecen, G. P. Basavarsu, A. N. Choudhary, and S. R. Kalidindi, “Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters,” Integr. Mater. Manuf. Innovation 3, 119 (2014).
http://dx.doi.org/10.1186/2193-9772-3-8
10.
10.B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, “Combinatorial screening for new materials in unconstrained composition space with machine learning,” Phys. Rev. B 89, 17 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.094104
11.
11.R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan, and A. Choudhary, “A predictive machine learning approach for microstructure optimization and materials design,” Sci. Rep. 5, 11551 (2015).
http://dx.doi.org/10.1038/srep11551
12.
12.H. George, “John and Pat Langley. Estimating continuous distributions in Bayesian classifiers,” in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (Morgan Kaufmann Publishers Inc., 1995), pp. 338345.
13.
13.R. R. Bouckaert, “Naive Bayes classifiers that perform well with continuous variables,” in AI 2004: Advances in Artificial Intelligence (Springer, 2004), pp. 10891094.
14.
14.D. Hosmer and S. Lemeshow, Applied Logistic Regression (John Wiley and Sons, Inc., 1989).
15.
15.E. Weher, “Edwards, Allen, L.: An introduction to linear regression and correlation. (A series of books in psychology.) W. H. Freeman and Comp., San Francisco 1976. 213 S., Tafelanh., s 7.00,” Biom. J. 19, 8384 (1977).
http://dx.doi.org/10.1002/bimj.4710190121
16.
16.D. W. Aha and D. Kibler, “Instance-based learning algorithms,” Mach. Learn. 6, 3766 (1991).
http://dx.doi.org/10.1007/bf00153759
17.
17.C. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, 1995).
18.
18.L. Fausett, Fundamentals of Neural Networks (Prentice Hall, New York, 1994).
19.
19.V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, 1995).
20.
20.R. Kohavi, “The power of decision tables,” in Proceedings of the 8th European Conference on Machine Learning, ECML ’95 (Springer-Verlag, London, UK, 1995), pp. 174189.
http://dx.doi.org/10.1007/3-540-59286-5_57
21.
21.I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Publication, 2005).
22.
22.J. Quinlan, C4. 5: Programs for Machine Learning (Morgan Kaufmann, 1993).
23.
23.Y. Freund and L. Mason, “The alternating decision tree learning algorithm,” in Proceeding of the Sixteenth International Conference on Machine Learning (Citeseer, 1999), pp. 124133.
24.
24.N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Mach. Learn. 59, 161205 (2005).
http://dx.doi.org/10.1007/s10994-005-0466-3
25.
25.M. Sumner, E. Frank, and M. Hall, “Speeding up logistic model tree induction,” in Knowledge Discovery in Databases: PKDD 2005 (Springer, 2005), pp. 675683.
26.
26.Y. Wang and I. Witten, “Induction of model trees for predicting continuous classes,” inProceedings of European Conference on Machine Learning Poster Papers, Prague, Czech Republic (Springer, 1997), pp. 128137.
27.
27.J. R. Quinlan, Learning with Continuous Classes (World Scientific, 1992), pp. 343348.
28.
28.Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in Proceedings of the 13th International Conference on Machine Learning 96, 148-156 (1996).
29.
29.L. Breiman, “Bagging predictors,” Mach. Learn. 24, 123140 (1996).
http://dx.doi.org/10.1007/bf00058655
30.
30.T. Ho, “The random subspace method for constructing decision forests,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 832844 (1998).
http://dx.doi.org/10.1109/34.709601
31.
31.L. Breiman, “Random forests,” Mach. Learn. 45, 532 (2001).
http://dx.doi.org/10.1023/A:1010933404324
32.
32.J. Rodriguez, L. Kuncheva, and C. Alonso, “Rotation forest: A new classifier ensemble method,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 16191630 (2006).
http://dx.doi.org/10.1109/TPAMI.2006.211
33.
33.S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder, “Predicting crystal structures with data mining of quantum calculations,” Phys. Rev. Lett. 91, 135503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.135503
34.
34.C. C. Fischer, K. J. Tibbetts, D. Morgan, and G. Ceder, “Predicting crystal structure by merging data mining with quantum mechanics,” Nat. Mater. 5, 641646 (2006).
http://dx.doi.org/10.1038/nmat1691
35.
35.G. Hautier, C. C. Fischer, A. Jain, T. Mueller, and G. Ceder, “Finding natures missing ternary oxide compounds using machine learning and density functional theory,” Chem. Mater. 22, 37623767 (2010).
http://dx.doi.org/10.1021/cm100795d
36.
36.K. Gopalakrishnan, A. Agrawal, H. Ceylan, S. Kim, and A. Choudhary, “Knowledge discovery and data mining in pavement inverse analysis,” Transport 28, 110 (2013).
http://dx.doi.org/10.3846/16484142.2013.777941
37.
37.P. Deshpande, B. P. Gautham, A. Cecen, S. Kalidindi, A. Agrawal, and A. Choudhary, “Application of statistical and machine learning techniques for correlating properties to composition and manufacturing processes of steels,” in 2nd World Congress on Integrated Computational Materials Engineering (John Wiley & Sons, Inc., 2013), pp. 155160.
38.
38.A. G. Kusne, T. Gao, A. Mehta, L. Ke, M. C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M. J. Kramer, C. Long et al., “On-the-fly machine-learning for high-throughput experiments: Search for rare-earth-free permanent magnets,” Sci. Rep. 4, 6367 (2014).
http://dx.doi.org/10.1038/srep06367
39.
39.R. Liu, Y. C. Yabansu, A. Agrawal, S. R. Kalidindi, and A. N. Choudhary, “Machine learning approaches for elastic localization linkages in high-contrast composite materials,” Integr. Mater. Manuf. Innovation 4, 117 (2015).
http://dx.doi.org/10.1201/b18620-2
40.
40.P. V. Balachandran, J. Theiler, J. M. Rondinelli, and T. Lookman, “Materials prediction via classification learning,” Sci. Rep. 5, 13285 (2015).
http://dx.doi.org/10.1038/srep13285
41.
41.F. Faber, A. Lindmaa, O. A. von Lilienfeld, and R. Armiento, “Crystal structure representations for machine learning models of formation energies,” Int. J. Quantum Chem. 115, 10941101 (2015).
http://dx.doi.org/10.1002/qua.24917
42.
42.Y. Bengio, “Learning deep architectures for ai,” Found. Trends® Mach. Learn. 2, 1127 (2009).
http://dx.doi.org/10.1561/2200000006
43.
43.W. Fan and A. Bifet, “Mining big data: Current status, and forecast to the future,” ACM SIGKDD Explor. Newsl. 14, 15 (2013).
http://dx.doi.org/10.1145/2481244.2481246
44.
44.A. Agrawal, M. Patwary, W. Hendrix, W.-k. Liao, and A. Choudhary, “Big Data and High Performance Computing,” in Cloud Computing and Big Data, edited byL. Grandinetti, Advances in Parallel Computing Vol. 23 (IOS Press, 2013), pp. 192211.
45.
45.M. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao, F. Manne, and A. Choudhary, “Scalable parallel optics data clustering using graph algorithmic techniques,” in Proceedings of 25th International Conference on High Performance Computing, Networking, Storage and Analysis (Supercomputing, SC’13) (ACM, 2013), pp. 112.
http://dx.doi.org/10.1145/2503210.2503255
46.
46.Z. Chen, S. W. Son, W. Hendrix, A. Agrawal, W.-k. Liao, and A. Choudhary, “Numarck: Machine learning algorithm for resiliency and checkpointing,” in Proceedings of 26th International Conference on High Performance Computing, Networking, Storage and Analysis (Supercomputing, SC’14) (ACM, 2014), pp. 733744.
http://dx.doi.org/10.1109/SC.2014.65
47.
47.Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein, “Distributed graphlab: A framework for machine learning and data mining in the cloud,” Proc. VLDB Endowment 5, 716727 (2012).
http://dx.doi.org/10.14778/2212351.2212354
48.
48.Y. Xie, D. Palsetia, G. Trajcevski, A. Agrawal, and A. Choudhary, “Silverback: Scalable association mining for temporal data in columnar probabilistic databases,” in Proceedings of 30th IEEE International Conference on Data Engineering (ICDE), Industrial and Applications Track (IEEE, 2014), pp. 10721083.
49.
49.S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. Fox, “A tale of two data-intensive paradigms: Applications, abstractions, and architectures,” in Big Data (BigData Congress), 2014 IEEE International Congress on (IEEE, 2014), pp. 645652.
http://dx.doi.org/10.1109/BigData.Congress.2014.137
50.
50.Y. Xie, P. Daga, Y. Cheng, K. Zhang, A. Agrawal, and A. Choudhary, “Reducing infrequent-token perplexity via variational corpora,” in Proceedings of the 53rd Annual Meeting of the Association of Computational Linguistics (ACL) and the 7th International Joint Conference on Natural Language Processing (ACL Anthology, 2015), pp. 609615, available at https://aclweb.org/anthology/P/P15/P15-2101.pdf.
51.
51.G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-to-item collaborative filtering,” IEEE Internet Comput. 7, 7680 (2003).
http://dx.doi.org/10.1109/MIC.2003.1167344
52.
52.Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel collaborative filtering for the netflix prize,” in Algorithmic Aspects in Information and Management (Springer, 2008), pp. 337348.
53.
53.Y. Xie, D. Honbo, A. Choudhary, K. Zhang, Y. Cheng, and A. Agrawal, “Voxsup: A social engagement framework,” in Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (Demo Paper) (ACM, 2012), pp. 15561559.
http://dx.doi.org/10.1145/2339530.2339779
54.
54.H. C. Koh, G. Tan et al., “Data mining applications in healthcare,” J. Healthcare Inf. Manage. 19, 6472 (2005), available at http://www.ncbi.nlm.nih.gov/pubmed/15869215.
55.
55.A. Agrawal, S. Misra, R. Narayanan, L. Polepeddi, and A. Choudhary, “Lung cancer survival prediction using ensemble data mining on seer data,” Sci. Program. 20, 2942 (2012).
http://dx.doi.org/10.1155/2012/920245
56.
56.J. S. Mathias, A. Agrawal, J. Feinglass, A. J. Cooper, D. W. Baker, and A. Choudhary, “Development of a 5 year life expectancy index in older adults using predictive mining of electronic health record data,” J. Am. Med. Inf. Assoc. 20, e118e124 (2013).
http://dx.doi.org/10.1136/amiajnl-2012-001360
57.
57.K. Lee, A. Agrawal, and A. Choudhary, “Real-time disease surveillance using twitter data: Demonstration on flu and cancer,” in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13 (ACM, New York, NY, USA, 2013), pp. 14741477.
http://dx.doi.org/10.1145/2487575.2487709
58.
58.L. Liu, J. Tang, Y. Cheng, A. Agrawal, W.-k. Liao, and A. Choudhary, “Mining diabetes complication and treatment patterns for clinical decision support,” in Proceedings of 22th ACM International Conference on Information and Knowledge Management (CIKM 2013), San Francisco, USA (ACM, 2013), pp. 279288.
59.
59.K. Lee, A. Agrawal, and A. Choudhary, “Mining social media streams to improve public health allergy surveillance,” in Proceedings of IEEE/ACM International Conference on Social Networks Analysis and Mining (ASONAM) (IEEE, 2015), pp. 815822.
60.
60.C. K. Reddy and C. C. Aggarwal, Healthcare Data Analytics (CRC Press, 2015), Vol. 36.
61.
61.A. R. Ganguly, E. Kodra, A. Agrawal, A. Banerjee, S. Boriah, S. Chatterjee, S. Chatterjee, A. Choudhary, D. Das, J. Faghmous, P. Ganguli, S. Ghosh, K. Hayhoe, C. Hays, W. Hendrix, Q. Fu, J. Kawale, D. Kumar, V. Kumar, W.-k. Liao, S. Liess, R. Mawalagedara, V. Mithal, R. Oglesby, K. Salvi, P. K. Snyder, K. Steinhaeuser, D. Wang, and D. Wuebbles, “Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques,” Nonlinear Processes Geophys. 21, 777795 (2014).
http://dx.doi.org/10.5194/npg-21-777-2014
62.
62.C. Jin, Q. Fu, H. Wang, W. Hendrix, Z. Chen, A. Agrawal, A. Banerjee, and A. Choudhary, “Running map inference on million node graphical models: A high performance computing perspective,” in Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (IEEE, 2015), pp. 565575.
63.
63.V. Lakshmanan, E. Gilleland, A. McGovern, and M. Tingley, Machine Learning and Data Mining Approaches to Climate Science (Springer, 2015).
64.
64.S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman, “Gapped BLAST and PSI-BLAST: A new generation of protein database search programs,” Nucl. Acids Res. 25, 33893402 (1997).
http://dx.doi.org/10.1093/nar/25.17.3389
65.
65.A. Agrawal and X. Huang, “PSIBLAST_PairwiseStatSig: Reordering PSI-BLAST hits using pairwise statistical significance,” Bioinformatics 25, 10821083 (2009).
http://dx.doi.org/10.1093/bioinformatics/btp089
66.
66.A. Agrawal and X. Huang, “Pairwise statistical significance of local sequence alignment using sequence-specific and position-specific substitution matrices,” IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 194205 (2011).
http://dx.doi.org/10.1109/TCBB.2009.69
67.
67.S. Misra, A. Agrawal, W.-k. Liao, and A. Choudhary, “Anatomy of a hash-based long read sequence mapping algorithm for next generation DNA sequencing,” Bioinformatics 27, 189195 (2011).
http://dx.doi.org/10.1093/bioinformatics/btq648
68.
68.A. ODriscoll, J. Daugelaite, and R. D. Sleator, “big data, hadoop and cloud computing in genomics,” J. Biomed. Inf. 46, 774781 (2013).
http://dx.doi.org/10.1016/j.jbi.2013.07.001
69.
69.Y. Xie, Z. Chen, K. Zhang, Y. Cheng, D. K. Honbo, A. Agrawal, and A. Choudhary, “Muses: A multilingual sentiment elicitation system for social media data,” IEEE Intell. Syst. 29, 3442 (2013).
http://dx.doi.org/10.1109/MIS.2013.52
70.
70.Y. Cheng, A. Agrawal, H. Liu, and A. Choudhary, “Social role identification via dual uncertainty minimization regularization,” in Proceedings of International Conference on Data Mining (ICDM) (IEEE, 2014), pp. 767772.
71.
71.R. Zafarani, M. A. Abbasi, and H. Liu, Social Media Mining: An Introduction (Cambridge University Press, 2014).
72.
72.See http://smds.nims.go.jp/fatigue/index_en.html for National Institute of Materials Science, accessed on Jan 12, 2016.
73.
73.G. E. Dieter, Mechanical Metallurgy, 3rd ed. (Mc Graw-Hill Book Company, 1986).
74.
74.R. Liu, A. Agrawal, Z. Chen, W. keng Liao, and A. Choudhary, “Pruned search: A machine learning based meta-heuristic approach for constrained continuous optimization,” in Proceedings of 8th IEEE International Conference on Contemporary Computing (IC3) (IEEE, 2015), pp. 1318.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/5/10.1063/1.4946894
Loading
/content/aip/journal/aplmater/4/5/10.1063/1.4946894
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/5/10.1063/1.4946894
2016-04-15
2016-09-28

Abstract

Our ability to collect “big data” has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materialsinformatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models(property prediction) and inverse models(materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/5/1.4946894.html;jsessionid=4-Rg657ZxXa-BT85RiXdCjyM.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/5/10.1063/1.4946894&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/5/10.1063/1.4946894&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/5/10.1063/1.4946894'
Top,Right1,Right2,Right3,