Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/5/10.1063/1.4948270
1.
1.F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, and G. H. Fredrickson, “Multiblock polymers: Panacea or pandora’s box?,” Science 336, 434440 (2012).
http://dx.doi.org/10.1126/science.1215368
2.
2.J. M. Rondinelli, K. R. Poeppelmeier, and A. Zunger, “Research Update: Towards designed functionalities in oxide-based electronic materials,” APL Mater. 3, 080702 (2015).
http://dx.doi.org/10.1063/1.4928289
3.
3.A. Jain, J. A. Bollinger, and T. M. Truskett, “Inverse methods for material design,” AIChE J. 60, 27322740 (2014).
http://dx.doi.org/10.1002/aic.14491
4.
4.A. O. Lyakhov and A. R. Oganov, “Evolutionary search for superhard materials: Methodology and applications to forms of carbon andTiO2,” Phys. Rev. B 84, 092103 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.092103
5.
5.A. R. Oganov, A. O. Lyakhov, and M. Valle, “How evolutionary crystal structure prediction works-and why,” Acc. Chem. Res. 44, 227237 (2011).
http://dx.doi.org/10.1021/ar1001318
6.
6.B. I. Dahiyat and S. L. Mayo, “De novo protein design: Fully automated sequence selection,” Science 278, 8287 (1997).
http://dx.doi.org/10.1126/science.278.5335.82
7.
7.B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard, and D. Baker, “Design of a novel globular protein fold with atomic-level accuracy,” Science 302, 13641368 (2003).
http://dx.doi.org/10.1126/science.1089427
8.
8.A. F. Hannon, K. W. Gotrik, C. A. Ross, and A. Alexander-Katz, “Inverse design of topographical templates for directed self-assembly of block copolymers,” ACS Macro Lett. 2, 251255 (2013).
http://dx.doi.org/10.1021/mz400038b
9.
9.A. F. Hannon, Y. Ding, W. B. Bai, C. A. Ross, and A. Alexander-Katz, “Optimizing topographical templates for directed self-assembly of block copolymers via inverse design simulations,” Nano Lett. 14, 318325 (2014).
http://dx.doi.org/10.1021/nl404067s
10.
10.J. Qin, G. S. Khaira, Y. R. Su, G. P. Garner, M. Miskin, H. M. Jaeger, and J. J. de Pablo, “Evolutionary pattern design for copolymer directed self-assembly,” Soft Matter 9, 1146711472 (2013).
http://dx.doi.org/10.1039/c3sm51971f
11.
11.G. S. Khaira, J. Qin, G. P. Garner, S. Xiong, L. Wan, R. Ruiz, H. M. Jaeger, P. F. Nealey, and J. J. de Pablo, “Evolutionary optimization of directed self-assembly of triblock copolymers on chemically patterned substrates,” ACS Macro Lett. 3, 747752 (2014).
http://dx.doi.org/10.1021/mz5002349
12.
12.E. Bianchi, G. Doppelbauer, L. Filion, M. Dijkstra, and G. Kahl, “Predicting patchy particle crystals: Variable box shape simulations and evolutionary algorithms,” J. Chem. Phys. 136, 214102 (2012).
http://dx.doi.org/10.1063/1.4722477
13.
13.H. M. Jaeger, “Toward jamming by design,” Soft Matter 11, 1227 (2015).
http://dx.doi.org/10.1039/C4SM01923G
14.
14.M. Z. Miskin and H. M. Jaeger, “Adapting granular materials through artificial evolution,” Nat. Mater. 12, 326331 (2013).
http://dx.doi.org/10.1038/nmat3543
15.
15.M. Z. Miskin and H. M. Jaeger, “Evolving design rules for the inverse granular packing problem,” Soft Matter 10, 37083715 (2014).
http://dx.doi.org/10.1039/c4sm00539b
16.
16.L. K. Roth and H. M. Jaeger, “Optimizing packing fraction in granular media composed of overlapping spheres,” Soft Matter 12, 11071115 (2016).
http://dx.doi.org/10.1039/c5sm02335a
17.
17.S. Wilken, M. Z. Miskin, and H. M. Jaeger, “Optimizing a reconfigurable material via evolutionary computation,” Phys. Rev. E 92, 022212 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.022212
18.
18.M. Z. Miskin, G. S. Khaira, J. J. de Pablo, and H. M. Jaeger, “Turning statistical physics models into materials design engines,” Proc. Natl. Acad. Sci. U. S. A. 113, 3439 (2016).
http://dx.doi.org/10.1073/pnas.1509316112
19.
19.N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),” Evol. Comput. 11, 118 (2003).
http://dx.doi.org/10.1162/106365603321828970
20.
20.J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Springer, Berlin, 1999), ISBN-13: 0387986561.
21.
21.H. M. Jaeger, S. R. Nagel, and R. P. Behringer, “Granular solids, liquids, and gases,” Rev. Mod. Phys. 68, 12591273 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.1259
22.
22.A. J. Liu and S. R. Nagel, “The jamming transition and the marginally jammed solid,” Annu. Rev. Condens. Matter Phys. 1, 347369 (2010).
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
23.
23.S. Torquato and F. H. Stillinger, “Jammed hard-particle packings: From Kepler to Bernal and beyond,” Rev. Mod. Phys. 82, 26332672 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.2633
24.
24.S. Torquato and Y. Jiao, “Organizing principles for dense packings of nonspherical hard particles: Not all shapes are created equal,” Phys. Rev. E 86, 011102 (2012).
http://dx.doi.org/10.1103/Physreve.86.011102
25.
25.G. Gagg, E. Ghassemieh, and F. E. Wiria, “Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant,” Mater. Sci. Eng., C 33, 38583864 (2013).
http://dx.doi.org/10.1016/j.msec.2013.05.021
26.
26.O. Ivanova, C. Williams, and T. Campbell, “Additive manufacturing (AM) and nanotechnology: Promises and challenges,” Rapid Prototyping J. 19, 353364 (2013).
http://dx.doi.org/10.1108/rpj-12-2011-0127
27.
27.J. Sedlak, M. Ptackova, J. Nejedly, M. Madaj, J. Dvoracek, J. Zouhar, O. Charvat, M. Piska, and L. Rozkosny, “Material analysis of titanium alloy produced by direct metal laser sintering,” Int. J. Metalcast. 7, 4350 (2013).
http://dx.doi.org/10.1007/bf03355552
28.
28.E. Steltz, A. Mozeika, N. Rodenberg, E. Brown, and H. M. Jaeger, “JSEL: Jamming skin enabled locomotion,” in IEEE/RSJ International Conference on Intelligent Robots and Systems IROS (IEEE, 2009), pp. 56725677.
http://dx.doi.org/10.1109/iros.2009.5354790
29.
29.E. Steltz, A. Mozeika, J. Rembisz, N. Corson, and H. M. Jaeger, “Jamming as an enabling technology for soft robotics,” Proc. SPIE 7642, 764225 (2010).
http://dx.doi.org/10.1117/12.853182
30.
30.E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, “Universal robotic gripper based on the jamming of granular material,” Proc. Natl. Acad. Sci. U. S. A. 107, 1880918814 (2010).
http://dx.doi.org/10.1073/pnas.1003250107
31.
31.J. R. Amend, E. M. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A positive pressure universal gripper based on the jamming of granular material,,” IEEE Trans. Rob. 28, 341350 (2012).
http://dx.doi.org/10.1109/TRO.2011.2171093
32.
32.A. A. Stanley, J. C. Gwilliam, and A. M. Okamura, “Haptic jamming: A deformable geometry, variable stiffness tactile display using pneumatics and particle jamming,” in IEEE World Haptics Conference, Daejeon, Korea (IEEE, 2013), pp. 2530.
http://dx.doi.org/10.1109/WHC.2013.6548379
33.
33.S. Follmer, D. Leithinger, A. Olwal, N. Cheng, and H. Ishii, “Jamming user interfaces: Programmable particle stiffness and sensing for malleable and shape-changing devices,” in 25th Annual ACM Symposium on User Interface Software and Technology, Cambridge, Massachusetts, USA (Association for Computing Machinery, 2012), pp. 519528.
http://dx.doi.org/10.1145/2380116.2380181
34.
34.F. Y. Fraige, P. A. Langston, and G. Z. Chen, “Distinct element modelling of cubic particle packing and flow,” Powder Technol. 186, 224240 (2008).
http://dx.doi.org/10.1016/j.powtec.2007.12.009
35.
35.A. Haji-Akbari, M. Engel, A. S. Keys, X. Zheng, R. G. Petschek, P. Palffy-Muhoray, and S. C. Glotzer, “Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra,” Nature 462, 773777 (2009).
http://dx.doi.org/10.1038/nature08641
36.
36.S. Torquato and Y. Jiao, “Dense packings of the Platonic and Archimedean solids,” Nature 460, 876879 (2009).
http://dx.doi.org/10.1038/nature08239
37.
37.A. Jaoshvili, A. Esakia, M. Porrati, and P. M. Chaikin, “Experiments on the random packing of tetrahedral dice,” Phys. Rev. Lett. 104, 185501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.185501
38.
38.J. Baker and A. Kudrolli, “Maximum and minimum stable random packings of Platonic solids,” Phys. Rev. E 82, 061304 (2010).
http://dx.doi.org/10.1103/Physreve.82.061304
39.
39.M. Neudecker, S. Ulrich, S. Herminghaus, and M. Schröter, “Jammed frictional tetrahedra are hyperstatic,” Phys. Rev. Lett. 111, 028001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.028001
40.
40.P. W. Cleary and M. L. Sawley, “DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge,” Appl. Math. Modell. 26, 89111 (2002).
http://dx.doi.org/10.1016/s0307-904x(01)00050-6
41.
41.A. Donev, R. Connelly, F. H. Stillinger, and S. Torquato, “Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids,” Phys. Rev. E 75, 051304 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.051304
42.
42.C. F. Schreck, N. Xu, and C. S. O’Hern, “A comparison of jamming behavior in systems composed of dimer- and ellipse-shaped particles,” Soft Matter 6, 29602969 (2010).
http://dx.doi.org/10.1039/c001085e
43.
43.G. W. Delaney and P. W. Cleary, “The packing properties of superellipsoids,” Europhys. Lett. 89, 34002 (2010).
http://dx.doi.org/10.1209/0295-5075/89/34002
44.
44.R. F. Shepherd, J. C. Conrad, T. Sabuwala, G. G. Gioia, and J. A. Lewis, “Structural evolution of cuboidal granular media,” Soft Matter 8, 47954801 (2012).
http://dx.doi.org/10.1039/c2sm06829j
45.
45.R. Ni, A. P. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra, “Phase diagram of colloidal hard superballs: From cubes via spheres to octahedra,” Soft Matter 8, 88268834 (2012).
http://dx.doi.org/10.1039/c2sm25813g
46.
46.A. Wouterse, S. R. Williams, and A. P. Philipse, “Effect of particle shape on the density and microstructure of random packings,” J. Phys.: Condens. Matter 19, 406215 (2007).
http://dx.doi.org/10.1088/0953-8984/19/40/406215
47.
47.A. Wouterse, S. Luding, and A. P. Philipse, “On contact numbers in random rod packings,” Granular Matter 11, 169177 (2009).
http://dx.doi.org/10.1007/s10035-009-0126-6
48.
48.J. Zhao, S. X. Li, P. Lu, L. Y. Meng, T. Li, and H. P. Zhu, “Shape influences on the packing density of frustums,” Powder Technol. 214, 500505 (2011).
http://dx.doi.org/10.1016/j.powtec.2011.09.013
49.
49.D. O. Potyondy and P. A. Cundall, “A bonded-particle model for rock,” Int. J. Rock Mech. Min. Sci. 41, 13291364 (2004).
http://dx.doi.org/10.1016/j.ijrmms.2004.09.011
50.
50.T. Pöschel and T. Schwager, Computational Granular Dynamics: Models and Algorithms (Springer-Verlag, Berlin, 2005).
51.
51.D. O. Potyondy, “Simulating stress corrosion with a bonded-particle model for rock,” Int. J. Rock Mech. Min. Sci. 44, 677691 (2007).
http://dx.doi.org/10.1016/j.ijrmms.2006.10.002
52.
52.M. Kodam, R. Bharadwaj, J. Curtis, B. Hancock, and C. Wassgren, “Force model considerations for glued-sphere discrete element method simulations,” Chem. Eng. Sci. 64, 34663475 (2009).
http://dx.doi.org/10.1016/j.ces.2009.04.025
53.
53.C. Salot, P. Gotteland, and P. Villard, “Influence of relative density on granular materials behavior: DEM simulations of triaxial tests,” Granular Matter 11, 221236 (2009).
http://dx.doi.org/10.1007/s10035-009-0138-2
54.
54.B. Saint-Cyr, J. Y. Delenne, C. Voivret, F. Radjai, and P. Sornay, “Rheology of granular materials composed of nonconvex particles,” Phys. Rev. E 84, 041302 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.041302
55.
55.F. Ludewig and N. Vandewalle, “Strong interlocking of nonconvex particles in random packings,” Phys. Rev. E 85, 051307 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.051307
56.
56.C. L. Phillips, J. A. Anderson, G. Huber, and S. C. Glotzer, “Optimal filling of shapes,” Phys. Rev. Lett. 108, 198304 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.198304
57.
57.H. F. Burcharth, K. d’Angremond, J. W. van der Meer, and Z. Liu, “Empirical formula for breakage of dolosse and tetrapods,” Coastal Eng. 40, 183206 (2000).
http://dx.doi.org/10.1016/s0378-3839(00)00010-7
58.
58.S. Remond, J. L. Gallias, and A. Mizrahi, “Simulation of the packing of granular mixtures of non-convex particles and voids characterization,” Granular Matter 10, 157170 (2008).
http://dx.doi.org/10.1007/s10035-007-0082-y
59.
59.L. N. Zou, X. Cheng, M. L. Rivers, H. M. Jaeger, and S. R. Nagel, “The packing of granular polymer chains,” Science 326, 408410 (2009).
http://dx.doi.org/10.1126/science.1177114
60.
60.S. A. Galindo-Torres, F. Alonso-Marroquin, Y. C. Wang, D. Pedroso, and J. D. M. Castano, “Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity,” Phys. Rev. E 79, 060301 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.060301
61.
61.I. Malinouskaya, V. V. Mourzenko, J. F. Thovert, and P. M. Adler, “Random packings of spiky particles: Geometry and transport properties,” Phys. Rev. E 80, 011304 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.011304
62.
62.L. M. Lopatina, C. J. O. Reichhardt, and C. Reichhardt, “Jamming in granular polymers,” Phys. Rev. E 84, 011303 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011303
63.
63.J. de Graaf, R. van Roij, and M. Dijkstra, “Dense regular packings of irregular nonconvex particles,” Phys. Rev. Lett. 107, 155501 (2011).
http://dx.doi.org/10.1103/physrevlett.107.155501
64.
64.E. Brown, A. Nasto, A. G. Athanassiadis, and H. M. Jaeger, “Strain-stiffening in random packings of entangled granular chains,” Phys. Rev. Lett. 108, 108302 (2012).
http://dx.doi.org/10.1103/physrevlett.108.108302
65.
65.N. Gravish, S. V. Franklin, D. L. Hu, and D. I. Goldman, “Entangled granular media,” Phys. Rev. Lett. 108, 208001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.208001
66.
66.L. Y. Meng, S. X. Li, P. Lu, T. Li, and W. W. Jin, “Bending and elongation effects on the random packing of curved spherocylinders,” Phys. Rev. E 86, 061309 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061309
67.
67.J. Hartl and J. Y. Ooi, “Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments,” Powder Technol. 212, 231239 (2011).
http://dx.doi.org/10.1016/j.powtec.2011.05.022
68.
68.P. A. Cundall, “A discontinuous future for numerical modelling in geomechanics?,” Proc. ICE: Geotech. Eng. 149, 4147 (2001).
http://dx.doi.org/10.1680/geng.2001.149.1.41
69.
69.G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, Oxford, England, 2006), ISBN-13: 978–0198567295.
70.
70.F. A. Detcheverry, H. Kang, K. C. Daoulas, M. Müller, P. F. Nealey, and J. J. de Pablo, “Monte Carlo simulations of a coarse grain model for block copolymers and nanocomposites,” Macromolecules 41, 49895001 (2008).
http://dx.doi.org/10.1021/ma702514v
71.
71.D. F. Sunday, M. R. Hammond, C. Wang, and J. Kline, “Determination of the internal morphology of nanostructures patterned by directed self assembly,” ACS Nano 8, 84268437 (2014).
http://dx.doi.org/10.1021/nn5029289
72.
72.G. Khaira, E. Doxastakis, P. Nealey, and J. de Pablo (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/5/10.1063/1.4948270
Loading
/content/aip/journal/aplmater/4/5/10.1063/1.4948270
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/5/10.1063/1.4948270
2016-04-28
2016-09-28

Abstract

The creation of new materials “by design” is a process that starts from desired materials properties and proceeds to identify requirements for the constituent components. Such process is challenging because it inverts the typical modeling approach, which starts from given micro-level components to predict macro-level properties. We describe how to tackle this inverse problem using concepts from evolutionary computation. These concepts have widespread applicability and open up new opportunities for design as well as discovery. Here we apply them to design tasks involving two very different classes of soft materials, shape-optimized granular media and nanopatterned block copolymer thin films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/5/1.4948270.html;jsessionid=z4pw3zrHYO4wQGgxpsC3n_G0.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/5/10.1063/1.4948270&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/5/10.1063/1.4948270&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/5/10.1063/1.4948270'
Top,Right1,Right2,Right3,