Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, and G. H. Fredrickson, “Multiblock polymers: Panacea or pandora’s box?,” Science 336, 434440 (2012).
2.J. M. Rondinelli, K. R. Poeppelmeier, and A. Zunger, “Research Update: Towards designed functionalities in oxide-based electronic materials,” APL Mater. 3, 080702 (2015).
3.A. Jain, J. A. Bollinger, and T. M. Truskett, “Inverse methods for material design,” AIChE J. 60, 27322740 (2014).
4.A. O. Lyakhov and A. R. Oganov, “Evolutionary search for superhard materials: Methodology and applications to forms of carbon andTiO2,” Phys. Rev. B 84, 092103 (2011).
5.A. R. Oganov, A. O. Lyakhov, and M. Valle, “How evolutionary crystal structure prediction works-and why,” Acc. Chem. Res. 44, 227237 (2011).
6.B. I. Dahiyat and S. L. Mayo, “De novo protein design: Fully automated sequence selection,” Science 278, 8287 (1997).
7.B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard, and D. Baker, “Design of a novel globular protein fold with atomic-level accuracy,” Science 302, 13641368 (2003).
8.A. F. Hannon, K. W. Gotrik, C. A. Ross, and A. Alexander-Katz, “Inverse design of topographical templates for directed self-assembly of block copolymers,” ACS Macro Lett. 2, 251255 (2013).
9.A. F. Hannon, Y. Ding, W. B. Bai, C. A. Ross, and A. Alexander-Katz, “Optimizing topographical templates for directed self-assembly of block copolymers via inverse design simulations,” Nano Lett. 14, 318325 (2014).
10.J. Qin, G. S. Khaira, Y. R. Su, G. P. Garner, M. Miskin, H. M. Jaeger, and J. J. de Pablo, “Evolutionary pattern design for copolymer directed self-assembly,” Soft Matter 9, 1146711472 (2013).
11.G. S. Khaira, J. Qin, G. P. Garner, S. Xiong, L. Wan, R. Ruiz, H. M. Jaeger, P. F. Nealey, and J. J. de Pablo, “Evolutionary optimization of directed self-assembly of triblock copolymers on chemically patterned substrates,” ACS Macro Lett. 3, 747752 (2014).
12.E. Bianchi, G. Doppelbauer, L. Filion, M. Dijkstra, and G. Kahl, “Predicting patchy particle crystals: Variable box shape simulations and evolutionary algorithms,” J. Chem. Phys. 136, 214102 (2012).
13.H. M. Jaeger, “Toward jamming by design,” Soft Matter 11, 1227 (2015).
14.M. Z. Miskin and H. M. Jaeger, “Adapting granular materials through artificial evolution,” Nat. Mater. 12, 326331 (2013).
15.M. Z. Miskin and H. M. Jaeger, “Evolving design rules for the inverse granular packing problem,” Soft Matter 10, 37083715 (2014).
16.L. K. Roth and H. M. Jaeger, “Optimizing packing fraction in granular media composed of overlapping spheres,” Soft Matter 12, 11071115 (2016).
17.S. Wilken, M. Z. Miskin, and H. M. Jaeger, “Optimizing a reconfigurable material via evolutionary computation,” Phys. Rev. E 92, 022212 (2015).
18.M. Z. Miskin, G. S. Khaira, J. J. de Pablo, and H. M. Jaeger, “Turning statistical physics models into materials design engines,” Proc. Natl. Acad. Sci. U. S. A. 113, 3439 (2016).
19.N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),” Evol. Comput. 11, 118 (2003).
20.J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Springer, Berlin, 1999), ISBN-13: 0387986561.
21.H. M. Jaeger, S. R. Nagel, and R. P. Behringer, “Granular solids, liquids, and gases,” Rev. Mod. Phys. 68, 12591273 (1996).
22.A. J. Liu and S. R. Nagel, “The jamming transition and the marginally jammed solid,” Annu. Rev. Condens. Matter Phys. 1, 347369 (2010).
23.S. Torquato and F. H. Stillinger, “Jammed hard-particle packings: From Kepler to Bernal and beyond,” Rev. Mod. Phys. 82, 26332672 (2010).
24.S. Torquato and Y. Jiao, “Organizing principles for dense packings of nonspherical hard particles: Not all shapes are created equal,” Phys. Rev. E 86, 011102 (2012).
25.G. Gagg, E. Ghassemieh, and F. E. Wiria, “Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant,” Mater. Sci. Eng., C 33, 38583864 (2013).
26.O. Ivanova, C. Williams, and T. Campbell, “Additive manufacturing (AM) and nanotechnology: Promises and challenges,” Rapid Prototyping J. 19, 353364 (2013).
27.J. Sedlak, M. Ptackova, J. Nejedly, M. Madaj, J. Dvoracek, J. Zouhar, O. Charvat, M. Piska, and L. Rozkosny, “Material analysis of titanium alloy produced by direct metal laser sintering,” Int. J. Metalcast. 7, 4350 (2013).
28.E. Steltz, A. Mozeika, N. Rodenberg, E. Brown, and H. M. Jaeger, “JSEL: Jamming skin enabled locomotion,” in IEEE/RSJ International Conference on Intelligent Robots and Systems IROS (IEEE, 2009), pp. 56725677.
29.E. Steltz, A. Mozeika, J. Rembisz, N. Corson, and H. M. Jaeger, “Jamming as an enabling technology for soft robotics,” Proc. SPIE 7642, 764225 (2010).
30.E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, “Universal robotic gripper based on the jamming of granular material,” Proc. Natl. Acad. Sci. U. S. A. 107, 1880918814 (2010).
31.J. R. Amend, E. M. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A positive pressure universal gripper based on the jamming of granular material,,” IEEE Trans. Rob. 28, 341350 (2012).
32.A. A. Stanley, J. C. Gwilliam, and A. M. Okamura, “Haptic jamming: A deformable geometry, variable stiffness tactile display using pneumatics and particle jamming,” in IEEE World Haptics Conference, Daejeon, Korea (IEEE, 2013), pp. 2530.
33.S. Follmer, D. Leithinger, A. Olwal, N. Cheng, and H. Ishii, “Jamming user interfaces: Programmable particle stiffness and sensing for malleable and shape-changing devices,” in 25th Annual ACM Symposium on User Interface Software and Technology, Cambridge, Massachusetts, USA (Association for Computing Machinery, 2012), pp. 519528.
34.F. Y. Fraige, P. A. Langston, and G. Z. Chen, “Distinct element modelling of cubic particle packing and flow,” Powder Technol. 186, 224240 (2008).
35.A. Haji-Akbari, M. Engel, A. S. Keys, X. Zheng, R. G. Petschek, P. Palffy-Muhoray, and S. C. Glotzer, “Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra,” Nature 462, 773777 (2009).
36.S. Torquato and Y. Jiao, “Dense packings of the Platonic and Archimedean solids,” Nature 460, 876879 (2009).
37.A. Jaoshvili, A. Esakia, M. Porrati, and P. M. Chaikin, “Experiments on the random packing of tetrahedral dice,” Phys. Rev. Lett. 104, 185501 (2010).
38.J. Baker and A. Kudrolli, “Maximum and minimum stable random packings of Platonic solids,” Phys. Rev. E 82, 061304 (2010).
39.M. Neudecker, S. Ulrich, S. Herminghaus, and M. Schröter, “Jammed frictional tetrahedra are hyperstatic,” Phys. Rev. Lett. 111, 028001 (2013).
40.P. W. Cleary and M. L. Sawley, “DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge,” Appl. Math. Modell. 26, 89111 (2002).
41.A. Donev, R. Connelly, F. H. Stillinger, and S. Torquato, “Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids,” Phys. Rev. E 75, 051304 (2007).
42.C. F. Schreck, N. Xu, and C. S. O’Hern, “A comparison of jamming behavior in systems composed of dimer- and ellipse-shaped particles,” Soft Matter 6, 29602969 (2010).
43.G. W. Delaney and P. W. Cleary, “The packing properties of superellipsoids,” Europhys. Lett. 89, 34002 (2010).
44.R. F. Shepherd, J. C. Conrad, T. Sabuwala, G. G. Gioia, and J. A. Lewis, “Structural evolution of cuboidal granular media,” Soft Matter 8, 47954801 (2012).
45.R. Ni, A. P. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra, “Phase diagram of colloidal hard superballs: From cubes via spheres to octahedra,” Soft Matter 8, 88268834 (2012).
46.A. Wouterse, S. R. Williams, and A. P. Philipse, “Effect of particle shape on the density and microstructure of random packings,” J. Phys.: Condens. Matter 19, 406215 (2007).
47.A. Wouterse, S. Luding, and A. P. Philipse, “On contact numbers in random rod packings,” Granular Matter 11, 169177 (2009).
48.J. Zhao, S. X. Li, P. Lu, L. Y. Meng, T. Li, and H. P. Zhu, “Shape influences on the packing density of frustums,” Powder Technol. 214, 500505 (2011).
49.D. O. Potyondy and P. A. Cundall, “A bonded-particle model for rock,” Int. J. Rock Mech. Min. Sci. 41, 13291364 (2004).
50.T. Pöschel and T. Schwager, Computational Granular Dynamics: Models and Algorithms (Springer-Verlag, Berlin, 2005).
51.D. O. Potyondy, “Simulating stress corrosion with a bonded-particle model for rock,” Int. J. Rock Mech. Min. Sci. 44, 677691 (2007).
52.M. Kodam, R. Bharadwaj, J. Curtis, B. Hancock, and C. Wassgren, “Force model considerations for glued-sphere discrete element method simulations,” Chem. Eng. Sci. 64, 34663475 (2009).
53.C. Salot, P. Gotteland, and P. Villard, “Influence of relative density on granular materials behavior: DEM simulations of triaxial tests,” Granular Matter 11, 221236 (2009).
54.B. Saint-Cyr, J. Y. Delenne, C. Voivret, F. Radjai, and P. Sornay, “Rheology of granular materials composed of nonconvex particles,” Phys. Rev. E 84, 041302 (2011).
55.F. Ludewig and N. Vandewalle, “Strong interlocking of nonconvex particles in random packings,” Phys. Rev. E 85, 051307 (2012).
56.C. L. Phillips, J. A. Anderson, G. Huber, and S. C. Glotzer, “Optimal filling of shapes,” Phys. Rev. Lett. 108, 198304 (2012).
57.H. F. Burcharth, K. d’Angremond, J. W. van der Meer, and Z. Liu, “Empirical formula for breakage of dolosse and tetrapods,” Coastal Eng. 40, 183206 (2000).
58.S. Remond, J. L. Gallias, and A. Mizrahi, “Simulation of the packing of granular mixtures of non-convex particles and voids characterization,” Granular Matter 10, 157170 (2008).
59.L. N. Zou, X. Cheng, M. L. Rivers, H. M. Jaeger, and S. R. Nagel, “The packing of granular polymer chains,” Science 326, 408410 (2009).
60.S. A. Galindo-Torres, F. Alonso-Marroquin, Y. C. Wang, D. Pedroso, and J. D. M. Castano, “Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity,” Phys. Rev. E 79, 060301 (2009).
61.I. Malinouskaya, V. V. Mourzenko, J. F. Thovert, and P. M. Adler, “Random packings of spiky particles: Geometry and transport properties,” Phys. Rev. E 80, 011304 (2009).
62.L. M. Lopatina, C. J. O. Reichhardt, and C. Reichhardt, “Jamming in granular polymers,” Phys. Rev. E 84, 011303 (2011).
63.J. de Graaf, R. van Roij, and M. Dijkstra, “Dense regular packings of irregular nonconvex particles,” Phys. Rev. Lett. 107, 155501 (2011).
64.E. Brown, A. Nasto, A. G. Athanassiadis, and H. M. Jaeger, “Strain-stiffening in random packings of entangled granular chains,” Phys. Rev. Lett. 108, 108302 (2012).
65.N. Gravish, S. V. Franklin, D. L. Hu, and D. I. Goldman, “Entangled granular media,” Phys. Rev. Lett. 108, 208001 (2012).
66.L. Y. Meng, S. X. Li, P. Lu, T. Li, and W. W. Jin, “Bending and elongation effects on the random packing of curved spherocylinders,” Phys. Rev. E 86, 061309 (2012).
67.J. Hartl and J. Y. Ooi, “Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments,” Powder Technol. 212, 231239 (2011).
68.P. A. Cundall, “A discontinuous future for numerical modelling in geomechanics?,” Proc. ICE: Geotech. Eng. 149, 4147 (2001).
69.G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, Oxford, England, 2006), ISBN-13: 978–0198567295.
70.F. A. Detcheverry, H. Kang, K. C. Daoulas, M. Müller, P. F. Nealey, and J. J. de Pablo, “Monte Carlo simulations of a coarse grain model for block copolymers and nanocomposites,” Macromolecules 41, 49895001 (2008).
71.D. F. Sunday, M. R. Hammond, C. Wang, and J. Kline, “Determination of the internal morphology of nanostructures patterned by directed self assembly,” ACS Nano 8, 84268437 (2014).
72.G. Khaira, E. Doxastakis, P. Nealey, and J. de Pablo (unpublished).

Data & Media loading...


Article metrics loading...



The creation of new materials “by design” is a process that starts from desired materials properties and proceeds to identify requirements for the constituent components. Such process is challenging because it inverts the typical modeling approach, which starts from given micro-level components to predict macro-level properties. We describe how to tackle this inverse problem using concepts from evolutionary computation. These concepts have widespread applicability and open up new opportunities for design as well as discovery. Here we apply them to design tasks involving two very different classes of soft materials, shape-optimized granular media and nanopatterned block copolymer thin films.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd