Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. O. Jones, “Density functional theory: Its origins, rise to prominence, and future,” Rev. Mod. Phys. 87, 897 (2015).
2.A. P. Drozdov, M. I. Eremets, and I. A. Troyan, “Conventional superconductivity at 190 K at high pressures,” e-print arXiv:1412.0460 (2014).
3.A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73 (2015).
4.L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, “Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures,” Phys. Rev. B 50, 4260 (1994).
5.J. G. Bednorz and K. A. Muller, “Possible high Tc superconductivity in the Ba-La-Cu-O system,” Z. Phys. B: Condens. Matter 64, 180 (1986).
6.H. Shimizu, Y. Nakamichi, and S. Sasaki, “Pressure-induced phase transition in solid hydrogen sulfide at 11 GPa,” J. Chem. Phys. 95, 2036 (1991).
7.H. Shimizu and S. Sasaki, “High-pressure Brillouin studies and elastic properties of single-crystal H2S grown in a diamond cell,” Science 257, 514 (1992).
8.S. Endo, N. Ichimiya, K. Koto, S. Sasaki, and H. Shimizu, “X-ray-diffraction study of solid hydrogen sulfide under high pressure,” Phys. Rev. B 50, 5865 (1994).
9.H. Shimizu, T. Ushida, S. Sasaki, M. Sakashita, H. Yamawaki, and K. Aoki, “High-pressure phase transitions of solid H2S probed by Fourier-transform infrared spectroscopy,” Phys. Rev. B 55, 5538 (1997).
10.M. Sakashita, H. Yamawaki, H. Fujihisa, K. Aoki, S. Sasaki, and H. Shimizu, “Pressure-induced molecular dissociation and metallization in hydrogen-bonded H2S solid,” Phys. Rev. Lett. 79, 1082 (1997).
11.S. Endo, A. Honda, K. Koto, O. Shimomura, T. Kikegawa, and N. Hamaya, “Crystal structure of high-pressure phase-IV solid hydrogen sulfide,” Phys. Rev. B 57, 5699 (1998).
12.M. Sakashita, H. Fujihisa, H. Yamawaki, and K. Aoki, “Molecular dissociation in deuterium sulfide under high pressure: Infrared and Raman study,” J. Phys. Chem. A 104, 8838 (2000).
13.H. Fujihisa, H. Yamawaki, M. Sakashita, A. Nakayama, T. Yamada, and K. Aoki, “Molecular dissociation and two low-temperature high-pressure phases of H2S,” Phys. Rev. B 69, 214102 (2004).
14.T. A. Strobel, P. Ganesh, M. Somayazulu, P. R. C. Kent, and R. J. Hemley, “Novel cooperative interactions and structural ordering in H2S–H2,” Phys. Rev. Lett. 107, 255503 (2011).
15.Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, “The metallization and superconductivity of dense hydrogen sulfide,” J. Chem. Phys. 140, 174712 (2014).
16.D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, “Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity,” Sci. Rep. 4, 6968 (2014).
17.I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, “High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor,” Phys. Rev. Lett. 114, 157004 (2015).
18.Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, and Y. Ma, “Dissociation products and structures of solid H2S at strong compression,” Phys. Rev. B 93, 020103 (2016).
19.I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, “Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system,” Nature 532, 81 (2016).
20.A. Bianconi and T. Jarlborg, “Superconductivity above the lowest Earth temperature in pressurized sulfur hydride,” EPL 112, 37001 (2015).
21.M. Komelj and H. Krakauer, “Electron-phonon coupling and exchange-correlation effects in superconducting H3S under high pressure,” Phys. Rev. B 92, 205125 (2015).
22.N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, “What superconducts in sulfur hydrides under pressure and why,” Phys. Rev. B 91, 060511 (2015).
23.E. J. Nicol and J. P. Carbotte, “Comparison of pressurized sulfur hydride with conventional superconductors,” Phys. Rev. B 91, 220507 (2015).
24.D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, “Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur,” Phys. Rev. B 91, 184511 (2015).
25.R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, “First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides,” Phys. Rev. B 91, 224513 (2015).
26.C. Heil and L. Boeri, “Influence of bonding on superconductivity in high-pressure hydrides,” Phys. Rev. B 92, 060508 (2015).
27.J. A. Flores-Livas, A. Sanna, and E. K. U. Gross, “High temperature superconductivity in sulfur and selenium hydrides at high pressure,” Eur. Phys. J. B 89, 63 (2016).
28.R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, “Ab initio simulation of phase transitions and dissociation of H2S at high pressure,” Phys. Rev. Lett. 85, 1254 (2000).
29.D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui, “Pressure-induced decomposition of solid hydrogen sulfide,” Phys. Rev. B 91, 180502 (2015).
30.M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. Eremets, A. Drozdov, I. Troyan, N. Hirao, and Y. Ohishi, “Crystal structure of 200 K-superconducting phase of sulfur hydride system,” e-print arXiv:1412.0460 (2015).
31.C. J. Pickard and R. J. Needs, “High-pressure phases of silane,” Phys. Rev. Lett. 97, 045504 (2006).
32.C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys.: Condens. Matter 23, 053201 (2011).
33.S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, “First principles methods using CASTEP,” Z. Kristallogr. 220, 567 (2005).
34.Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).
35.Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063 (2012).
36.G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15 (1996).
37.G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1966).
38.P. Gianozzi et al., “QUANTUM ESPRESO: A modular and open source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).
39.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
40.C. J. Pickard, M. Martinez-Canales, and R. J. Needs, “Decomposition and terapascal phases of water ice,” Phys. Rev. Lett. 110, 245701 (2013).
41.D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B 41, 7892 (1990).
42.A. J. Morris, R. J. Nicholls, C. J. Pickard, and J. R. Yates, “A tool for obtaining density of states, core-level and optical spectra from electronic structure codes,” Comput. Phys. Commun. 185, 1477 (2014).
43.A. Bianconi and T. Jarlborg, Novel Superconducting Materials 1(1), 2299 (2015).
44.N. W. Ashcroft, “Metallic hydrogen: A high-temperature superconductor?,” Phys. Rev. Lett. 21, 1748 (1968).
45.C. F. Richardson and N. W. Ashcroft, “High temperature superconductivity in metallic hydrogen: Electron-electron enhancements,” Phys. Rev. Lett. 78, 118 (1997).
46.L. Zhang, Y. Niu, Q. Li, T. Cui, Y. Wang, Y. Ma, Z. He, and G. Zou, “Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure,” Solid State Commun. 141, 610 (2007).
47.P. Cudazzo, G. Profeta, A. Sanna, A. Flores, A. Continenza, S. Massidda, and E. K. U. Gross, “Electron-phonon interaction and superconductivity in metallic molecular hydrogen. II. Superconductivity under pressure,” Phys. Rev. B 81, 134505 (2010).
48.N. D. Drummond, B. Monserrat, J. H. Lloyd-Williams, C. J. Pickard, P. Lopez Rios, and R. J. Needs, “Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures,” Nat. Commun. 6, 7794 (2015).
49.C. J. Pickard and R. J. Needs, “Structure of phase III of solid hydrogen,” Nat. Phys. 3, 473 (2007).
50.J. M. McMahon and D. M. Ceperley, “High-temperature superconductivity in atomic metallic hydrogen,” Phys. Rev. B 84, 144515 (2011).
51.N. W. Ashcroft, “Hydrogen dominant metallic alloys: High temperature superconductors?,” Phys. Rev. Lett. 92, 187002 (2004).
52.J. Feng, W. Grochala, T. Jaron, R. Hoffmann, A. Bergara, and N. W. Ashcroft, “Structures and potential superconductivity in SiH4 at high pressure: En route to ‘metallic hydrogen,’” Phys. Rev. Lett. 96, 017006 (2006).
53.M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, and Y. Yao, “Superconductivity in hydrogen dominant materials: Silane,” Science 319, 1506 (2008).
54.O. Degtyareva, J. E. Proctor, C. L. Guillaume, E. Gregoryanz, and M. Hanfland, “Formation of transition metal hydrides at high pressures,” Solid State Commun. 149, 1583 (2009).
55.C. J. Pickard and R. J. Needs, “Metallization of aluminum hydride at high pressures: A first-principles study,” Phys. Rev. B 76, 144114 (2007).
56.B. Rousseau and A. Bergara, “Giant anharmonicity suppresses superconductivity in AlH3 under pressure,” Phys. Rev. B 82, 104504 (2010).
57.P. Hou, X. Zhao, F. Tian, D. Li, D. Duan, Z. Zhao, B. Chu, B. Liu, and T. Cui, “High pressure structures and superconductivity of AlH3(H2) predicted by first principles,” RSC Adv. 5, 5096 (2015).
58.G. Gao, H. Wang, A. Bergara, Y. Li, G. Liu, and Y. Ma, “Metallic and superconducting gallane under high pressure,” Phys. Rev. B 84, 064118 (2011).
59.G. Gao, A. R. Oganov, A. Bergara, M. Martinez-Canales, T. Cui, T. Iitaka, Y. Ma, and G. Zou, “Superconducting high pressure phase of germane,” Phys. Rev. Lett. 101, 107002 (2008).
60.X. Jin, X. Meng, Z. He, Y. Ma, B. Liu, T. Cui, G. Zou, and H. Mao, “Superconducting high-pressure phases of disilane,” Proc. Natl. Acad. Sci. U. S. A. 107, 9969 (2010).
61.Y. Li, G. Gao, Y. Xie, Y. Ma, T. Cui, and G. Zou, “Superconductivity at ∼100 K in dense SiH4(H2)2 predicted by first principles,” Proc. Natl. Acad. Sci. U. S. A. 107, 15708 (2010).
62.H. Wang, S. T. John, K. Tanaka, T. Iitaka, and Y. Ma, “Superconductive sodalite-like clathrate calcium hydride at high pressures,” Proc. Natl. Acad. Sci. U. S. A. 109, 6463 (2012).
63.D. Y. Kim, R. H. Scheicher, and R. Ahuja, “Predicted high-temperature superconducting state in the hydrogen-dense transition-metal hydride YH3 at 40 K and 17.7 GPa,” Phys. Rev. Lett. 103, 077002 (2009).
64.Y. Li, J. Hao, H. Liu, S. T. John, Y. Wang, and Y. Ma, “Pressure-stabilized superconductive yttrium hydrides,” Sci. Rep. 5, 09948 (2015).
65.D. Y. Kim, R. H. Scheicher, C. J. Pickard, R. J. Needs, and R. Ahuja, “Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen,” Phys. Rev. Lett. 107, 117002 (2011).
66.I. Errea, M. Calandra, and F. Mauri, “Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides,” Phys. Rev. B 89, 064302 (2014).
67.T. Kaewmaraya, D. Y. Kim, S. Lebegue, C. J. Pickard, R. J. Needs, and R. Ahuja, “Theoretical investigation of xenon-hydrogen solids under pressure using ab initio DFT and GW calculations,” Phys. Rev. B 84, 092101 (2011).
68.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410, 63 (2001).
69.S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, “Boron isotope effect in superconducting MgB2,” Phys. Rev. Lett. 86, 1877 (2001).
70.Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, “Iron-based layered superconductor: LaOFeP,” J. Am. Chem. Soc. 128, 10012 (2006).
71.Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K,” J. Am. Chem. Soc. 130, 3296 (2008).
72.Z. P. Yin, K. Haule, and G. Kotliar, “Magnetism and charge dynamics in iron pnictides,” Nat. Phys. 7, 294 (2011).
73.B. Monserrat, E. A. Engel, and R. J. Needs, “Giant electron-phonon interactions in molecular crystals and the importance of nonquadratic coupling,” Phys. Rev. B 92, 140302 (2015).
74.D. J. Wales and J. P. K. Doye, “Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms,” J. Phys. Chem. A 101, 5111 (1997).
75.A. R. Oganov and C. W. Glass, “Crystal structure prediction using evolutionary algorithms: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).
76.N. L. Abraham and M. I. J. Probert, “A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction,” Phys. Rev. B 73, 224104 (2006).
77.Z. Falls, D. C. Lonie, P. Avery, A. Shamp, and E. Zurek, “XtalOpt Version r9: An open-source evolutionary algorithm for crystal structure prediction,” Comput. Phys. Commun. 199, 178 (2016).
78.S. Goedecker, “Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems,” J. Chem. Phys. 120, 9911 (2004).
79.F. H. Stillinger, “Exponential multiplicity of inherent structures,” Phys. Rev. E 59, 48 (1999).
80.J. P. K. Doye and C. P. Massen, “Characterizing the network topology of the energy landscapes of atomic clusters,” J. Chem. Phys. 122, 084105 (2005).
81.N. Xu, D. Frenkel, and A. J. Liu, “Direct determination of the size of basins of attraction of jammed solids,” Phys. Rev. Lett. 106, 245502 (2011).
82.L. Pauling, “The principles determining the structure of complex ionic crystals,” J. Am. Chem. Soc. 51, 1010 (1929).
83.V. S. Urusov and T. N. Nadezhina, “Frequency distribution and selection of space groups in inorganic crystal chemistry,” J. Struct. Chem. 50, 22 (2010).
84.A. J. Morris, C. J. Pickard, and R. J. Needs, “Hydrogen/silicon complexes in silicon from computational searches,” Phys. Rev. B 78, 184102 (2008).
85.A. J. Morris, C. P. Grey, R. J. Needs, and C. J. Pickard, “Energetics of hydrogen/lithium complexes in silicon analyzed using the Maxwell construction,” Phys. Rev. B 84, 224106 (2011).
86.G. Schusteritsch, S. P. Hepplestone, and C. J. Pickard, “First-principles structure determination of interface materials: The NixInAs nickelides,” Phys. Rev. B 92, 054105 (2015).
87.G. Schusteritsch and C. J. Pickard, “Predicting interface structures: From SrTiO3 to graphene,” Phys. Rev. B 90, 035424 (2014).
88.J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Saltzmann, and A. Michaelides, “Two dimensional ice from first-principles: Structures and phase transitions,” Phys. Rev. Lett. 116, 025501 (2016).
89.J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, “The properties of hydrogen and helium under extreme conditions,” Rev. Mod. Phys. 84, 1607 (2012).
90.Y. Akahama, M. Nishimura, H. Kawamura, N. Hirao, Y. Ohishi, and K. Takemura, “Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa,” Phys. Rev. B 82, 060101 (2010).
91.C. J. Pickard and R. J. Needs, “Structures at high pressure from random searching,” Phys. Status Solidi B 246, 536 (2009).
92.M. I. Eremets and I. A. Troyan, “Conductive dense hydrogen,” Nat. Mater. 10, 927 (2011).
93.R. T. Howie, C. L. Guillaume, T. Scheler, A. F. Goncharof, and E. Gregoryanz, “Mixed molecular and atomic phase of dense hydrogen,” Phys. Rev. Lett. 108, 125501 (2012).
94.C. J. Pickard, M. Martinez-Canales, and R. J. Needs, “Density functional theory study of phase IV of solid hydrogen,” Phys. Rev. B 85, 214114 (2012);
94.Erratum, C. J. Pickard, M. Martinez-Canales, and R. J. Needs, Phys. Rev. B 86, 059902 (2012).
95.P. Dalladay-Simpson, R. T. Howie, and E. Gregoryanz, “Evidence for a new phase of dense hydrogens above 325 gigapascals,” Nature 529, 63 (2016).
96.M. I. Eremets, I. A. Troyan, and A. P. Drozdov, “Low temperature phase diagram of hydrogen at pressures up to 380 GPa. A possible metallic phase at 360 GPa and 200 K,” preprint arXiv:1601.04479 (2016).
97.L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, V. L. Pourovskii, M. I. Katsnelson, J. M. Wills, and I. A. Abrikosov, “The most incompressible metal osmium at static pressures above 750 gigapascals,” Nature 525, 226 (2015).
98.R. F. Smith et al., “Ramp compression of diamond to five terapascals,” Nature 511, 330 (2014).
99.C. J. Pickard and R. J. Needs, “High-pressure physics: Piling up the pressure,” Nature 511, 294 (2014).
100.M. Martinez-Canales, C. J. Pickard, and R. J. Needs, “Thermodynamically stable phases of carbon at multiterapascal pressures,” Phys. Rev. Lett. 108, 045704 (2012).
101.B. A. Remington, R. E. Rudd, and J. S. Wark, “From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation,” Phys. Plasmas 22, 090501 (2015).
102.M.-S. Miao and R. Hoffmann, “High pressure electrides: A predictive chemical and physical theory,” Acc. Chem. Res. 47, 1311 (2014).
103.C. J. Pickard and R. J. Needs, “Aluminium at terapascal pressures,” Nat. Mater. 9, 624 (2010).
104.J. Sun, M. Martinez-Canales, D. D. Klug, C. J. Pickard, and R. J. Needs, “Stable all-nitrogen metallic salt at terapascal pressures,” Phys. Rev. Lett. 111, 175502 (2013).
105.Y. Li, Y. Wang, C. J. Pickard, R. J. Needs, Y. Wang, and Y. Ma, “Metallic icosahedron phase of sodium at terapascal pressures,” Phys. Rev. Lett. 114, 5501 (2015).
106.B. Monserrat, N. D. Drummond, and R. J. Needs, “Anharmonic vibrational properties in periodic systems: Energy, electron-phonon coupling, and stress,” Phys. Rev. B 87, 144302 (2013).
107.E. A. Engel, B. Monserrat, and R. J. Needs, “Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice,” Phys. Rev. X 5, 021033 (2015).
108.A. P. Drozdov, M. I. Eremets, and I. A. Troyan, “Superconductivity above 100 K in PH3 at high pressures,” e-print arXiv:1508.06224 (2015).
109.Y. Fu, X. Du, L. Zhang, F. Peng, M. Zhang, C. J. Pickard, R. J. Needs, D. J. Singh, W. Zheng, and Y. Ma, “High-pressure phase stability and superconductivity of pnictogen hydrides and chemical trends for compressed hydrides,” Chem. Mater. 28, 1746 (2016).
110.See for information about the ICSD database which reports experimentally verified inorganic crystal structures.
111.A. D. Fortes, E. Suard, M.-H. Lemee-Cailleau, C. J. Pickard, and R. J. Needs, “Crystal structure of ammonia monohydrate II,” J. Am. Chem. Soc. 131, 13508 (2009).
112.G. I. G. Griffiths, A. D. Fortes, C. J. Pickard, and R. J. Needs, “Crystal structure of ammonia dihydrate II,” J. Chem. Phys. 136, 174512 (2012).
113.A. M. Schaeffer, W. Cai, E. Olejnik, J. J. Molaison, S. Sinogeikin, A. M. dos Santos, and S. Deemyad, “Boundaries for martensitic transition of 7 Li under pressure,” Nat. Commun. 6, 8030 (2015).
114.B. T. Matthias, “Symmetries of superconducting sulfides,” Int. J. Quantum Chem. 10, 435 (1976).
115.B. Monserrat, C. J. Pickard, and R. J. Needs (unpublished).

Data & Media loading...


Article metrics loading...



Materials informatics owes much to bioinformatics and the Materials Genome Initiative has been inspired by the Human Genome Project. But there is more to bioinformatics than genomes, and the same is true for materials informatics. Here we describe the rapidly expanding role of searching for structures of materials using first-principles electronic-structure methods. Structure searching has played an important part in unraveling structures of dense hydrogen and in identifying the record-high-temperature superconducting component in hydrogen sulfide at high pressures. We suggest that first-principles structure searching has already demonstrated its ability to determine structures of a wide range of materials and that it will play a central and increasing part in materials discovery and design.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd